期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:400
Decay of the non-isentropic Navier-Stokes-Poisson equations
Article
Tan, Zhong1  Zhang, Xu1 
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
关键词: Navier-Stokes-Poisson equations;    Energy method;    Optimal decay rates;    Sobolev interpolation;    Negative Sobolev space;   
DOI  :  10.1016/j.jmaa.2012.09.021
来源: Elsevier
PDF
【 摘 要 】

We establish the time decay rates of the solution to the Cauchy problem for the non-isentropic compressible Navier-Stokes-Poisson system via a refined pure energy method. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. As a corollary, we also obtain the usual L-P - L-2(1 < p <= 2) type of the optimal decay rates. The (H) over dot(-s)(0 <= s < 3/2) negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates. We use a family of scaled energy estimates with minimum derivative counts and interpolations among them without linear decay analysis. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2012_09_021.pdf 245KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次