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1. Introduction

In this paper, we consider the non-isentropic compressible Navier-Stokes—Poisson (NSP) system for (x, t) € R® x R+

%p+V-(pu)=0
d(pu) + V- (pu@u) + Vp=—pVd +V-T
3:(p&) + V- (pu€ +up) = —pu- Ve + V- (uT) + kA (1.1)
—12A® =p —p, ‘l‘im D(x,t) =0.
X|— 00

which governs the charge transport in semiconductor devices [1], where p,u = (u',u?,u%),8,p = p(p,0), and &
represent the density, the velocity, the absolute temperature, the pressure and the electrostatic potential respectively. The
total energy € = 1|u|? + e with e = C,0, the stress tensor T = u(Vu + (Vu)") + v(V - w)I with I the identity matrix, and
the constants C, > 0, k > 0 are the heat capacity at constant volume and the coefficient of heat conductivity respectively.
A > 0is the scaled Debye length and p > 0 is the background doping profile [1].

We first review some previous works on the global existence of the solutions to the non-isentropic NSP system. The local
and global existence of the multi-dimension re-normalized solution was obtained in [2,3], and the global existence and
uniqueness of the strong solution in hybrid Besov space was shown in [4]. Later, Tan-Wu [5] extended these results to the
non-isentropic case in hybrid Besov space. The decay rate of solutions to the NS system has been investigated extensively
since the works [6,7]. When the initial perturbation py — 1, ug € I’ N HY with p € [1, 2] (Indeed, in those references p is
near 1and N > 3 is a large enough integer for the nonlinear system.), the L?> optimal decay rate of the solution to the NS
system is

o =L w®lp < ca+0 263, (12)
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But, Guo and Wang get a different result in [8] when the initial perturbation py — 1,uy € HY N H™, which is
(o =1L w2 <CA+1)72(0<s<3/2).

Recently, the decay rate of solutions to the isentropic NSP system was investigated in [9-12] and the references therein.
It is observed that the electric field has significant effects on the large time behavior of the solution. When the initial
perturbation pg — 1, 1y € I? N HY with p € [1, 2], then the L? optimal decay rate of the solution to the NSP system is

3

o= DOl =cA+0 2678 and Ju@lp < ca+o 26713, (1.3)

This implies that the presence of the electric field slows down the decay rate of the velocity of the NSP system with the factor
1/2 compared to the NS system. For the isentropic NSP system, Wang [11] gave a different comprehension of the effect of the
electric field on the time decay rates of the solutions to the compressible NSP system and showed that both the dispersion
effect of the electric field and the viscous dissipation contribute to enhance the decay rate of the density by introducing the

novel negative Sobolev space H*, with the delay rate ||u, 6 — 1, V& (t)|| < C(1+ t)’% and |[p — 1| < C(1 + t)’#.

Notation. When £ < 0 or £ is not a positive integer, V¢ stands for A defined by (1.4). We use HS(R3), s € R to denote
the homogeneous Sobolev spaces on R* with norm ||-|| ;s defined by (1.5), and we use H*(R3) to denote the usual Sobolev
spaces with norm ||-||zs and [P(R3), 1 < p < oo to denote the usual I spaces with norm ||-||;». Specially, ||g|| stands for
lgllz. If, g|? stands for ||f||> + ||g]|>. We also use G, for a positive constant depending additionally on the initial data. We
define the operator A°, s € R by

zﬂ@zf@ﬁ@ﬁmﬁ, (1.4)
R3

where f is the Fourier transform of f. We define the homogeneous Sobolev space H* of all f for which |f | ;s 1s finite, where

e o= | 4] = |15, - (15)
Our main results are stated in the following theorem.
Theorem 1.1. Assume that py — 1, ug, V& € HY, N > 3 and
/ (oo — 1)dx =0 (neutrality). (1.6)
R3
Then there exists a constant &g such that if
loo = iy + lluollys + IV@ollys + llgo — iz < do, (1.7)
then the problem (2.1) admits a unique global solution (p, u, V&, q) satisfying that for all t > 0,
(o — DO + u®Zy + VOO ll7n + 1@ — DOIIEN
t
+ / (o = D@ i + IVu@ iy + IVa@ 28 + VYV (D)2 dr
0
< C(lpo — 1Zw + luollZn + IV®ollZ + g0 — 11I2w) - (1.8)
If further, po — 1, ug, V&g, qo — 1 € H‘Sforsomes € [0, 3/2), then forall t > 0,
o = DO + u® 1= + I1(g — DO + VSO < Co. (1.9)
and for £ = 0,1, ..., N — 1, the following decay results hold:
¢ U ¢ ¢ s
[V = DO vee + [ Vu®) | e + [ V@ = DO v + [VVRWO) | yoe < G(1+1)7 2 (1.10)
and
¢ _ Uts+1
[V = D®)| <+t~ 2 fore=0,1,...,N—2. (1.11)

Note that the Hardy-Littlewood-Sobolev theorem (cf. Lemma 3.1) implies that for p € (1,2],IP C HS with s =
3(}1) — %) € [0, 3/2). Then by Theorem 1.1, we have the following corollary of the usual [P-L? type of the optimal decay
results:
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Corollary 1.2. Under the assumptions of Theorem 1.1 except that we replace the HS assumption by that po — 1,qy —
1, ug, V®q € I? for some p € (1, 2], then the following decay results hold for £ = 0,1,...,N — 1:

IV = DO | e + [V D || jye + [VVRO | yysice + [ V@ = DO || e < Co(14 1)~ (1.12)

and

Vi — DD 2 < Go(1+ t)_(g”’ﬁ%) for£=0,1,...,N —2. (1.13)

Here the number o, , is defined by

3/1 1 l
=—--—-= —. 1.14
w3 o

The present paper is structured as follows. Section 2 is devoted to establish the Energy estimates of (2.1). Section 3 is
devoted to establish negative Sobolev estimates. In Section 4, we prove Theorem 1.1 and Corollary 1.2.

2. Energy estimates

Denotingn = p — 1,u = u,q = 0 — 1,f(n) = ;15,g(n,q) = BIELIED — 1 h(n,q) = HEHD — 1 B(n, q) =

% — 1. Without loss of generality, we assume P,(1, 1) = Py(1, 1) = C, = k = A = 1. We can write the Eq. (1.1) as:
on+ divu = gy,
ou — uAu— (u+1)Vdivu+Vn+Vqg— Vo =g,
9q—Vqg+ Vu=gs, (2.1)
AD =n, lim &(x,t) =0,
x| =00
where
g1 = —div (nu),
& = —uVu—f(m(uAu+ (u+ 1)V di\g u) —g(n,q)Vn — h(n, q)Vq, 2.2)
g3 = —uVq+f(mAq—Bn,qVu+ m[ZuD(u) : D(u) + v(Vu)?].

In this section, we will derive the a priori energy estimates for the equivalent system (2.1). Hence we assume a priori that
for sufficiently small § > 0,

Veo®) = lo® Il + 1u®llyz + 1a®) 1y + VO @)l < 6. (2.3)
First of all, by (2.3) and Sobolev’s inequality, we obtain
1/2<n+1<2. (24)
Hence, we immediately have
Fml, 1gm, @I, [hn, @I, lgn, @)l < C(n| + |q)). (2.5)

We will extensively use the Sobolev interpolation of the Gagliardo-Nirenberg inequality.
Lemma 2.1. Let 0 < m, o < ¢, then we have

IV*Fllp < € |97 |94 ) (26)

where « satisfies

zl_ﬂlle<£19 97
3—p_<3—q)(—)+ 3_r)' (2.7)

Proof. This is a special case of [13, p. 125, Theorem]. O

Lemma 2.2. Assume that ||n, q||y2 < 1. Let g(n, q) be a smooth function of n, q with bounded derivatives, then for any integer
m > 1 we have

[V @ a0l = € (197" 9™+ 5 + [ v7a] 3 [v"2q)) (28)

L L 12
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Proof. Notice that form > 1,

g(n, q)) = asum of products g"" Yo An,q n--- "n 1’q ';q, .
Vm( ( )) f d Y1se¥niY- )/( )Vyl VvrnvY Ava4 (2 9)

where the functions g”+>?"(n) are some derivatives of g(n,q) and 1 < y; <m, i=1,...,nwithy; +--- + v + y{ +
-+ + y, = m. We then use the Sobolev interpolation of Lemma 2.1 to bound

[ @0, ) | = CUV il - IVl | V73g] -+ |74
< C(IV"nllg - 1V nll) ™ (V2970 o - [ V297 )
’ ’ 1/4 / , 3/4
< (|77l oo vrial,) " (v erial -+« [l )
2 2 12 12
< c (I o2y )

(Hvzn”l y1/m ||Vm+2 ||V1/m ||V2 ”1 Yn/m ||vm+2 ”yn/m) 3/4

1/4
x (gl " ol [ 97q) )

(Il [ o el )
< clinally (9] [l 2+ | Va3 v %) (2.10)

Hence, we conclude our lemma since [|n, gz < 1. O

We first derive the following energy estimates which contains the dissipation estimate for u.
Lemma 2.3. If \/eo(t) <4, thenfork=0,1,2,..., N, we have
d
E_/ IV + VUl + [V + [VEV®[? dx + C (Hvkﬂu”; + HVI<+1quZ>
R3

< e ([l + [ V*all + [V ulf + 944 s + [V Vo 3). (2.17)

Proof. Applying V¥to(2.1) 1, (2.1) 2, (2.1) 5, multiplying (V*n, V¥u, V¥q) and integrating by part, we get:

/(|an| + |[VFu? + |VEg? + ViV ? )dx+/ u| VU2 + (w4 1) VRdivul? + |V VEq|? dx

- / VVke . VFudx
R3

= /nglvkndx—i—/V"gZV"udx—l—/ng3qudx

= wi + wy + ws. (2.12)
wy = / VK= @V)u — f()(nAu + (u + 1)V divu) — g(n, q)Vn — h(n, q)Vq} VFudx
= W1 + Wy + W3 + Wy, (2.13)
wy = / vk <—u -Vq+f(n)Aq — B(n, q)Vu + ﬁ[zw(u) :D(u) + v(Vuz)]> V¥qdx

= W31 + W32 + W33 + Wi4. (2.14)

We will estimate w; (i = 1, 2, 3). We only estimate w for example, the rest are similar. Besides, in the course of estimating
wy3 and wa4, we use Lemma 2.2 in addition. When [ > % + 1,

wy = — / ] Vk(div (nu))V¥n dx
R

1 k k _ _
- —E/VUIV"nlzdx— ;CI/V’uV"_1VnV"ndx— ;/VJ(VH)Vk_]ndndx (2.15)
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k
Zc[/VeuV’HVnV"ndx
=1

|lwy1] =
k
< c1/VuV"‘1VnV"ndx+Zc@ /VluV’HVnV"ndx
=
k
< oo [V + 3 al [ Vul e [V, [ V|
=
k
< ci/B |Vl 3ol Vel E |V T VR | v
(=2
where

1 1 a 1 14 k+1 1 14

——==|z-—-z|x|1- +|—— -z ) x —,

3 6 3 2 k+1 3 2 k+1

k—¢+1 1 B 1 £ k1 14

— ==z | x—+ |-z ) x[1-—).
3 3 3 2 k+1 3 2 k+1

By computing it directly, we get:

k+1 3k + 3
=1 g g3
k—2¢+1

2¢ -

So,
2 2
fwnl = ¢y (V] + [ v 1u]).
In the same way, when | < [Zﬂ + 1, we have also have
2 2
il = C/eo ([ 940 + | v<1u)
From (2.18) and (2.19), we get
2 2
fwnl = ¢y (V] + [ v 1ul).
Similarly, we have
2 2
fwnal < € (|4 + [ %),
lwa1| < C/eo ||V’(+1UH2,
2 2
|mﬂsc¢%OW%H+WV”WH)
lwas| < C/eo(IVFRIP + IVEqI + V¥ u)?),
lwaal < C/eo(IVFRIP + IV5qI + V¥ u)?),
lws1] < C/eo(IVEqI? + IVFull? + V¥ q)?),
lwsa| < C/eo(IVEGI? + IVl + V¥ q)?),
lws| < C/eo(IVEqI? + IVl + V¥ q)?),
lwsal < C/eo (IVF I + [VFull? + [VF g% .
So, from (2.20), (2.21), we have
jwil = € (V4] + [ V<4 1u]).
So, from (2.22)-(2.25), we have

lwa| < C/eo (IVEI + VEGI” + IV 1ul?) .

¢
L ==

[V¥n|

297

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
(2.23)

2.24
2.25
2.26
2.27
2.28

/_\/_\/_\,_\,_\,_\
D e D D D

2.29

(2.30)

(2.31)
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So, from (2.26)-(2.29), we have
ws| < Cy/eo (IV¥nI> + IVEqI? + IV gl + [V ul?).
Finally, from (2.30)-(2.32), we have completed the proof of Lemma 2.3. O

The following lemma provides the dissipation estimate for n and V.

Lemma 2.4. If \/&o(t) < 6, thenfork =0,1,...,N — 1, we have

& v voinace o ([9l + |90l + [9190 s + [vrvel)
R

< (Il + |2l + e | < q?).

Proof. Applying V¥ to (2.1) , and then taking the L? inner product with VV*n, we obtain
/ [VV¥n|? dx — / vV - VVFndx
R3 R3
< / V¥ - YV dx 4 C | V<2u], [94 ),
R3

+ |V - Vu+ h@)(pAu + (u + VDV dive) + g, QVn+ hn, V)|, [V |, -

d
—/ Vku[-VV"ndx=—E Vku~Vandx—/ vk divu - Vi, dx
]R3

R3 R3

d
= —— Vku - VVkndx + ||Vk div uH 52 + / vk divu - V¥ div (nu) dx.
dt R3 R3

By Holder’s inequality, we have

/ Vidive- Vidivwyde s Y [ViVET |, [V ),
R? 0<t<k+1

So, we only need to estimate || V‘nV**1~‘y]| ,. By the method in Part two, we have
[Vl < Coo (I ¥l + |94 1ul,).
Thus, in view of (2.35), we obtain

= [ v v~ [ vetnac cIv Sl s vl
&3 dt RrR3

Next, note that it has been already proved along the proof of Lemma 2.3 that
V¥ (- Vu+ h()(nAu+ (u + D)V divu) + V)],
= CVeo (|V* 4+ [Vl o + [V 2ul )
We now use the integration by parts and the Poisson equation (2.1) 3 to have
- / VAV - VVFndx = / VKADVEndx = / |Vkn|? dx.
R3 R3 R3
On the other hand, it follows from the Poisson equation that

[V Vel = [Viae ], = [l and [PV, = |v*n]l, .

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

Consequently, by (2.38)—(2.41), together with Cauchy’s inequality, since /gy < 6 is small, we then deduce (2.33) from

(234). O
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3. Negative Sobolev estimates

In this section, we will derive the evolution of the negative Sobolev norms of the solution to Lemma 2.3.
Ifs € (0, 3), A~*f defined by (1.4) is the Riesz potential. The Hardy-Littlewood-Sobolev theorem implies the following
[P type inequality for the Riesz potential:

Lemma3.1. let0 <s <3, 1<p<q<oo, 1/q+5s/3 =1/p, then

| A7)0 < ClIfllio - (3.1)

Proof. See [14, p. 119, Theorem 1]. O

In order to estimate the nonlinear terms, we need to restrict ourselves to thats € (0, 3/2). We will establish the following
lemma.

Lemma 3.2. If /ey < §, then for s € (0, 1/2], we have
d
a/ |A™nP + |AT U + [ATVS + AP dx + C(| VAT u}, + | VA~q| )
R3

<C(lInqlZz + IVullZy) (JA7n] 2 + [A5u] . + ATV, + [47%])., (32)
and for s € (1/2, 3/2), we have

a |A= 0P + Al + |A7VOPR + (AP dx + (| VA™u| 5, + |[VA~q| 7 + [ VA~q|2)
dt Jgs3 L L L

< Cllm g V)l " (In, qllye + 19ully) 7 (| A™0, A0, A75q, A7V 5). (33)

Proof. Applying A™* to (2.1) 1, (2.1) 5, (2.1) 3 and multiplying the resulting identities by A~°n, A™*u, A~°q respectively,
summing them up and then integrating over R by parts, we obtain

ch/ AT + |A™5u)? + | A 5g)? dx—|—/ WIVATU? + (u + 1)| div A™5u|? dx

X / |A5q|)? — / ATV - A%udx = / ATG AT+ AT AT U+ Ag3 A qdx
R3 R3 R3
= T] + T2 + T3, (34)

T, = / A7 (—=ndivu —u-Vn) A ndx = Ty1 + T1a. (3.5)
R3

Fors € (0, 3),

Ty = —/3 A (ndivi)A™ndx < C A7 (divu) |, | A0,
<Cin divul o A7n], < Clinllas [ Vulla [ 470,
< C|vnlllf S||v2 |27 Ivulle 4=,
< C(Ivalfy + IvVuly) [a7n] 5 - (36)

Similarly, we can bound the remaining terms by
Ty = — f3 A (- Vm A~ ndx < C ([VullZ, + 1Val%) | A0 . . (3.7)
R
B= = [ A g udx = C (19U, + 1Vn.ul) |47, (38)
R

T3 = — / ATg AT qdx = C(IVu, gl + 1Vull?) | A0, (3.9)
R
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whens € (1/2, 3/2), we obtain

Th = — / A-S(mdiviyA~ndx < C A~ (ndivu)|, |40,
R3

< C|ndiv u||Lml+s/3 |A=n|, < Clinllss I Vullz A7),
< Clinli; 1Vl 1Vullz [ A~0] -

Similarly, we can bound the remaining terms by

- - —-1/2 3/2— —
T12=[3A S(u- VAT ndx < Cllully; IVl 2 19l A7),
R

12

T, = / A7 AT udx < Clin gl V0, Vgl 7 [ Vi, VPa|, A7l .
R

T, = f A7 A udx < Clin. gl 1Vn, Vally ™ [ Va, V2]l |47 o
R

Finally, we turn to the left hand side of (3.4). For the second term, we have

/ wIVATU? + (u + A)| div A™5u)? dx — / ATV - A™5udx > o ||v/r5u||f2 )
R3 R3

(3.10)

(3.11)

While for the Poisson term, by the continuity equation (2.1) ; and the Poisson equation (2.1) 5 and the integration by parts,

we get
—/ ATVO - A udx :/ AP A™divu dx
R3 R3

= / —ATPATn — AT D A div(nu) dx
R3

/ —ATOATRAD + ATV - A (nu) dx
R3

1d
= -— ATV |2 dx+/ ATV - A7 (nu) dx.
2dt Jp3 R3

If s € (0, 1/2], we use Lemmas 3.1 and 2.1 to obtain

| A=, < Clinllz lullss < Clinllp 1Vl [ V2] 325,

and if s € (1/2, 3/2), we have

_ —1/2 3/2—
|a= (w5 < Clinllz lullzs < Clinllz fully " 1Vu) 222

Consequently, in light of (3.6)-(3.14), we deduce (3.3) from (3.4). O

4. Proof of Theorem 1.1
We will employ the following special Sobolev interpolation:

Lemma 4.1. Let s > 0 and £ > 0, then we have

1

1-6
IVl < IV I where§ = J————.

H—S >

Proof. By the Parseval theorem, the definition of (1.5) and Hélder’s inequality, we have

—0

N [

9 —_
o= Vsl g o

1
L

V7], = 1615, < e+

(3.12)

(3.13)

(3.14)

(4.1)

(4.2)
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Summing up the estimates (2.11) of Lemma 2.3 from k = £ to m, since ,/ 8(3) < § is small, we obtain

d
= 2 (Il + [Vl + Vv + [Vial) + e Y VRl + | vl
£<k<m L+1<k<m+1
ses(X:UWﬂ;+wwM)+ )y UWﬂ;+wwM+wmemD. (43
{<k<m L+1<k<m+1
Summing up the estimates (2.33) of Lemma 2.4 from k = £ to m — 1, we have
i Z / Vku . VL dx + G ( Z ||an”f2 + Z ”VkVCDHfz)
d t<k=m—17/R> <k<m +1<k<m+1
=G Y Vulp+vE Y [Vl (44)
{+1<k<m+1 L+1<k<m+1

Multiplying (4.4) by 2C,8/C3, adding the resulting inequality with (4.3), since § > 0 is small, we deduce that there exists a
constant Cs > Osuchthatfor0 <¢ <m—1,

d 2Gy8
dt i Z (HV’aniz + ”vk””i2 + ||v’<vq)||§2> + ?2 Z /3 vk . VV"ndx}
R

{<k<m £<k<m-—1
+G { SoIvhale+ > VX | V"Wlliz} <o0. (45)
<k<m C+1<k<m+1 C+1<k<m+1

We define & (t) to be C;1 times the expression under the time derivative in (4.5). Observe that since & is small, &;"(t) =
[VEin(t), Veu(t), Viq(t), VEVO(t) ||ilm,£. Then we may write (4.5) as that for0 < £ <m — 1,
d 817! Vl 2 vf+l 2 vf+l 2 vf+lv¢ 2 <0 46
& TNVl + IV e + 19 e + | [im-e =0 (46)
Now taking £ = 0 and m = 3 in (4.6) and then integrating directly in time, we get

In(), u(t), g(6), VO ©)II3 < Ceo(t) < £0(0) < C lIng, o, uo, VPoll3 - (4.7)

By a standard continuity argument, this closes the a priori estimates (2.3) if at the initial time we assume that
[Ing, qo, Uo, Vq§0||§ < &y is sufficiently small. This in turn allows us to take £ = 0 and m = N in (4.6), and then integrate it
directly in time to obtain (1.8).

Next, we turn to prove (1.9)-(1.11). However, we are not able to prove them for all s € [0, 3/2) at this moment. We shall
first prove them for s € [0, 1/2].

Proof. Fors € [0, 1/2]. Define &_(t) := | A=*n(t), A=*u(t), A=5q(t), A=V (1) ||i2.Then, integrating in time (3.2), by the
bound (1.8), we obtain that fors € (0, 1/2],

t
E_5(t) < €_(0)+C / (In. qliZz + IVull?,) v é=s(z) dr
0

< G (1 + sup \/E,S(r)> . (4.8)

o<t<t
This implies (1.9) for s € [0, 1/2], that is,
|A=n©|5 + | A~a® |5 + |47 u®|} + |47 Ve®)|, < G fors e [0, 1/2]. (49)

If £ = 1, 2, we may use Lemma 4.1 to have

. 1
9417 = € a1 19557 (410

By this fact and (4.9), we may find

1
IVl + |9l + 9V = 6o (19l + |94 al s + 990 ) 7 (4.11)
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This together with (1.8) implies in particular that for £ = 1, 2,

19 -+ 1 s + 19 ey + [V VO iy

1
1+@¢§

= Co (19 nlfpee + 19 al e + [V ulee + [ 9V ) (412)

Thus, we deduce from (4.6) with m = N the following time differential inequality

d 1
6+ G (&M <0 fore=1,2. (4.13)
Solving this inequality directly gives

eN(t) < G+ )~ fore =1,2. (4.14)

This implies that for s € [0, 1/2],
|¥E (), a@O), u) oo + [ VYOO iwire < Co(1+ 07 fore =1, 2. (4.15)
On the other hand, since n = div V&, we have
|V} < [V Ve© |, < G+ 0~ fore =0, 1. (4.16)
Hence, by (4.15), (4.16), (4.9) and the interpolation, we get (1.10)-(1.11) for s € [0, 1/2]. O
Now we can present the
Proof of (1.9)-(1.11) for s € (1/2, 3/2).
|Vn). a(®), u(®) ;- + [VVDO [ jyere < Co(1+ 072 fore =0, 1,2 (4.17)

and
|V}, < 1+~ fore =0, 1. (4.18)

Hence, by (4.17)-(4.18), we deduce from (3.3) that for s € (1/2, 3/2),

&_s(t)

IA

12

t
c0+c0/ 1+ )" Y42 dr sup /6_4(1)
0

o<rt<t

Go <1 + sup \/8,5(‘[)> . (4.19)

o<t<t

t
£.4(0)+C / g, Vil (I, qllye + 1 Vully )™ Ve (o) de
0

IA

IA

This implies (1.9) for s € (1/2, 3/2), that is,

|A=n©|7 + | A=u® |5 + [A~a@ |5, + |47 Ve©)|5 < G fors € (1/2,3/2). (4.20)

Now that we have proved (4.20), we may repeat the arguments leading to (1.10)-(1.11) for s € [0, 1/2] to prove that
they hold also for s € (1/2,3/2). O
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