期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:368
The Black-Scholes equation in stochastic volatility models
Article
Ekstrom, Erik1  Tysk, Johan1 
[1] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
关键词: Parabolic equations;    Feynman-Kac theorems;    Option pricing;    Stochastic volatility;    Boundary conditions;   
DOI  :  10.1016/j.jmaa.2010.04.014
来源: Elsevier
PDF
【 摘 要 】

We study the Black-Scholes equation in stochastic volatility models. In particular, we show that the option price is the unique classical solution to a parabolic differential equation with a certain boundary behaviour for vanishing values of the volatility. If the boundary is attainable, then this boundary behaviour serves as a boundary condition and guarantees uniqueness in appropriate function spaces. On the other hand, if the boundary is non-attainable, then the boundary behaviour is not needed to guarantee uniqueness, but is nevertheless very useful for instance from a numerical perspective. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2010_04_014.pdf 201KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次