期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:382
Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems
Article
Sakamoto, Kenichi1  Yamamoto, Masahiro1 
[1] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 1538914, Japan
关键词: Fractional diffusion equation;    Initial value/boundary value problem;    Well-posedness;    Inverse problem;   
DOI  :  10.1016/j.jmaa.2011.04.058
来源: Elsevier
PDF
【 摘 要 】

We consider initial value/boundary value problems for fractional diffusion-wave equation: partial derivative(alpha)(t) u(x, t) = Lu (x, t), where 0 < alpha <= 2, where L is a symmetric uniformly elliptic operator with t-independent smooth coefficients. First we establish the unique existence of the weak solution and the asymptotic behavior as the time t goes to infinity and the proofs are based on the eigenfunction expansions. Second for alpha is an element of (0,1). we apply the eigenfunction expansions and prove (i) stability in the backward problem in time, (ii) the uniqueness in determining an initial value and (iii) the uniqueness of solution by the decay rate as t -> infinity, (iv) stability in an inverse source problem of determining t-dependent factor in the source by observation at one point over (0, T). (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2011_04_058.pdf 300KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次