期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:395
Carleson measures on a homogeneous tree
Article
Cohen, Joel M.2  Colonna, Flavia1  Singman, David1 
[1] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词: Carleson measures;    Trees;    Hardy spaces;    Harmonic;    Poisson kernel;   
DOI  :  10.1016/j.jmaa.2012.05.052
来源: Elsevier
PDF
【 摘 要 】

We introduce the notion of s-Carleson measure (s >= 1) on a homogeneous tree T and give several characterizations of such measures. In particular, we prove the following discrete version of the extension of Carleson's theorem due to Duren. For p > 1 and s >= 1, a finite measure sigma on T is s-Carleson if and only if there exists C > 0 such that for all f is an element of L-p(partial derivative T), parallel to Pf parallel to(Lsp(sigma)) <= C parallel to f parallel to(Lp(partial derivative T)), where Pf denotes the Poisson integral of f. Here, L-p(sigma) is the space of functions g defined on T such that vertical bar g vertical bar(p) is integrable with respect to sigma and L-p(partial derivative T) is the space of functions f defined on the boundary of T such that vertical bar f vertical bar(p) is integrable with respect to the representing measure of the harmonic function 1. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2012_05_052.pdf 257KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:0次