| JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:413 |
| A generalized Hilbert matrix acting on Hardy spaces | |
| Article | |
| Chatzifountas, Christos1  Girela, Daniel1  Angel Pelaez, Jose1  | |
| [1] Univ Malaga, Dept Anal Matemat, E-29071 Malaga, Spain | |
| 关键词: Hilbert matrices; Hardy spaces; BMOA; Carleson measures; Integration operators; Hankel operators; Besov spaces; Schatten classes; | |
| DOI : 10.1016/j.jmaa.2013.11.046 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
If mu is a positive Borel measure on the interval [0,1), the Hankel matrix H mu = (mu(n,k))(n,k >= 0) with entries mu n,k = integral((0, 1))t(n+k) d mu(t) induces formally the operator H mu (f) (z) = Sigma(infinity)(n=0) (Sigma(infinity)(k=0)mu(n),(a)(k)(k))z(n) on the space of all analytic functions f (z) = Sigma(infinity)(k=0) a(k)Z(k), in the unit disc ID. In this paper we describe those measures p, for which H-mu, is a bOunded (compact) operator from HP into H-q, 0 < p,q < infinity. We also characterize the measures p, for which 9-11, lies in the Schatten class S-p (H-2), 1 < p < infinity. (C) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmaa_2013_11_046.pdf | 348KB |
PDF