期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:413
A generalized Hilbert matrix acting on Hardy spaces
Article
Chatzifountas, Christos1  Girela, Daniel1  Angel Pelaez, Jose1 
[1] Univ Malaga, Dept Anal Matemat, E-29071 Malaga, Spain
关键词: Hilbert matrices;    Hardy spaces;    BMOA;    Carleson measures;    Integration operators;    Hankel operators;    Besov spaces;    Schatten classes;   
DOI  :  10.1016/j.jmaa.2013.11.046
来源: Elsevier
PDF
【 摘 要 】

If mu is a positive Borel measure on the interval [0,1), the Hankel matrix H mu = (mu(n,k))(n,k >= 0) with entries mu n,k = integral((0, 1))t(n+k) d mu(t) induces formally the operator H mu (f) (z) = Sigma(infinity)(n=0) (Sigma(infinity)(k=0)mu(n),(a)(k)(k))z(n) on the space of all analytic functions f (z) = Sigma(infinity)(k=0) a(k)Z(k), in the unit disc ID. In this paper we describe those measures p, for which H-mu, is a bOunded (compact) operator from HP into H-q, 0 < p,q < infinity. We also characterize the measures p, for which 9-11, lies in the Schatten class S-p (H-2), 1 < p < infinity. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_11_046.pdf 348KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次