期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:405 |
Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space | |
Article | |
Corsato, Chiara1  Obersnel, Franco1  Omari, Pierpaolo1  Rivetti, Sabrina1  | |
[1] Univ Trieste, Dipartimento Matemat & Geosci, I-34127 Trieste, Italy | |
关键词: Mean curvature; Minkowski space; Quasilinear elliptic equation; Dirichlet boundary condition; Positive solution; Existence; Multiplicity; Non-existence; Topological degree; Critical point theory; | |
DOI : 10.1016/j.jmaa.2013.04.003 | |
来源: Elsevier | |
【 摘 要 】
We prove the existence of multiple positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space {-div(del u/root 1-vertical bar del u vertical bar(2)) = f(x, u, del u) in Omega, u = 0 on partial derivative Omega. Here Omega is a bounded regular domain in R-N and the function f = f(x, s, xi) is either sublinear, or superlinear, or sub-superlinear near s = 0. The proof combines topological and variational methods. (C) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2013_04_003.pdf | 429KB | download |