期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:405
Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space
Article
Corsato, Chiara1  Obersnel, Franco1  Omari, Pierpaolo1  Rivetti, Sabrina1 
[1] Univ Trieste, Dipartimento Matemat & Geosci, I-34127 Trieste, Italy
关键词: Mean curvature;    Minkowski space;    Quasilinear elliptic equation;    Dirichlet boundary condition;    Positive solution;    Existence;    Multiplicity;    Non-existence;    Topological degree;    Critical point theory;   
DOI  :  10.1016/j.jmaa.2013.04.003
来源: Elsevier
PDF
【 摘 要 】

We prove the existence of multiple positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space {-div(del u/root 1-vertical bar del u vertical bar(2)) = f(x, u, del u) in Omega, u = 0 on partial derivative Omega. Here Omega is a bounded regular domain in R-N and the function f = f(x, s, xi) is either sublinear, or superlinear, or sub-superlinear near s = 0. The proof combines topological and variational methods. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_04_003.pdf 429KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次