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a b s t r a c t

We prove the existence of multiple positive solutions of the Dirichlet problem for the
prescribed mean curvature equation in Minkowski space

−div

∇u/


1 − |∇u|2


= f (x, u, ∇u) in Ω,

u = 0 on ∂Ω.

Here Ω is a bounded regular domain in RN and the function f = f (x, s, ξ) is either
sublinear, or superlinear, or sub-superlinear near s = 0. The proof combines topological
and variational methods.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Hypersurfaces of prescribedmean curvature inMinkowski space, with coordinates (x1, . . . , xN , t) andmetric
N

i=1 dx
2
i −

dt2, are of interest in differential geometry and in general relativity. In this paper we are concerned with the existence of
such a kind of hypersurfaces which are graphs of solutions of the Dirichlet problem:

−div

∇u/


1 − |∇u|2


= f (x, u) in Ω,

u = 0 on ∂Ω.
(1)

We assume throughout that Ω is a bounded domain in RN , with a boundary ∂Ω of class C2, and f : Ω × R → R satisfies
the Carathéodory conditions. By a solution of (1) we mean a function u ∈ W 2,r(Ω), for some r > N , with ∥∇u∥∞ < 1,
which satisfies the equation a.e. in Ω and vanishes on ∂Ω . These are strong strictly spacelike solutions of (1) according to
the terminology of, e.g., [5,15,2,10].

In [2,10] somegeneral solvability results for (1)were provedunder the assumption that the function f is globally bounded.
Yet, as all spacelike solutions are uniformly bounded by the quantity 1

2d(Ω), with d(Ω) the diameter of Ω , one can always
reduce to that situation by truncation. Nevertheless it should be observed that if one already knows that problem (1) admits
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zero as a solution, the results in [2,10] provide no further information. Therefore it may be interesting to investigate in
such cases the existence of non-trivial, in particular positive, solutions. We point out that while this topic has been largely
discussed in the literature for the Dirichlet problem associated with various classes of semilinear and quasilinear elliptic
equations (including the prescribedmean curvature equation in Euclidean space), no result seems to be available for problem
(1), at least when Ω is a general domain in RN .

Our aimhere is indeed to extend to a genuine PDE settingwhat has been obtained in [6], for the one-dimensional problem,
and in [3,4,7], for the radially symmetric problem in a ball. Namely, we will discuss the existence and the multiplicity of
positive solutions of (1), assuming that the function f = f (x, s) is sublinear, or superlinear, or sub-superlinear near s = 0.

In order to describe our results in a simple fashion, let us write the function f in the form

f (x, s) = λ a(x)(s+)p + µ b(x)(s+)q, (2)

whereλ, µ are non-negative real parameters, a, b : Ω̄ → R are continuous functions, and p, q are given exponents satisfying
0 < p ≤ 1 < q. The coefficients a, b are assumed to be simultaneously positive at some point of Ω , but they are allowed to
vanish in parts of Ω or to change sign. The following conclusions are then obtained.

Take µ = 0 in (2). If the exponent p ∈]0, 1[ is fixed, we prove that (1) has a positive solution for every λ > 0. If p = 1,
we show that (1) has a positive solution for all large λ > 0, whereas non-existence of positive solutions is shown to occur
for all sufficiently small λ > 0. It is immediately seen that in both cases the existence of positive solutions is guaranteed,
with the same choices of λ, for any given µ > 0.

Next, take λ = 0 in (2). If the exponent q ∈]1, +∞[ is fixed, we prove that (1) has at least two positive solutions for all
large µ > 0. Non-existence of positive solutions is also established for all sufficiently small µ > 0.

Lastly, take λ > 0 and µ > 0 in (2). Let the exponents p ∈]0, 1[ and q ∈]1, +∞[ be given. Then (1) has at least three
positive solutions for every large µ > 0 and all sufficiently small λ > 0.

We point out that in all these statements no restriction is placed on the range of the exponent q.
Our results should be comparedwith similar ones obtained in [8] for a class of semilinear problems, and in [9] and in [14]

for a class of quasilinear problems driven by the p-Laplace operator and the mean curvature operator in Euclidean space,
respectively. In these papers somekinds of local analogues to the classical conditions of ‘‘sublinearity’’ and of ‘‘superlinearity’’
have been introduced, extending in various directions some of the results proved in the celebrated work by Ambrosetti,
Brezis and Cerami [1]. We observe however that themultiplicity and the non-existence results we obtain for (1) are peculiar
of this problem, due to the specific structure of the differential operator, and have no analogue in all the above mentioned
cases.

We remark that, unlike in [6,7], our approach here is topological. This allows us to introduce a dependence on the gradient
of the solution into the right-hand side f of the equation so that we can replace (1) with

−div

∇u/


1 − |∇u|2


= f (x, u, ∇u) in Ω,

u = 0 on ∂Ω,
(3)

where again f : Ω ×R×RN
→ R satisfies the Carathéodory conditions. Of course, this problem does not have a variational

structure anymore. However, our construction of the open sets, where we evaluate the degree of the solution operator
associated with (3), relies on the knowledge of the radially symmetric solutions of suitable comparison problems, whose
existence is proved by a minimization argument in [7].

We finally notice that the solvability of problem (3) has been explicitly raised as an open question in the recentwork [13].
Notation. We list some additional notation that will be used throughout this paper. For s ∈ R we write s+ = max{s, 0} and
s− = −min{s, 0}. We denote by BR(x0), or simply by B if no disambiguation is needed, the open ball in RN centered at x0
and having radius R. For functions u, v : E → R, with E a subset of RN having positive measure, we write u ≤ v (in E)
if u(x) ≤ v(x) a.e. in E, and u < v (in E) if u ≤ v and u(x) < v(x) in a subset of E having positive measure. A function
u such that u > 0 is called positive. Assume that O is an open bounded set with a boundary ∂O of class C1; for functions
u, v ∈ C1(Ō), we write u ≪ v (in Ō) if u(x) < v(x) for every x ∈ O and, if u(x) = v(x) for some x ∈ ∂O, then ∂v

∂ν
(x) < ∂u

∂ν
(x),

where ν = ν(x) denotes the unit outer normal to O at x ∈ ∂O. A function u such that u ≫ 0 is called strictly positive. We
also set C1

0 (Ō) = {u ∈ C1(Ō) : u = 0 on ∂O}. Finally, we denote by I the identity operator.

2. Preliminaries

We collect in this section some results that will be repeatedly used in the proof of our main result. We start with a
comparison principle, which is a direct consequence of [2, Lemma 1.2].

Lemma 2.1. Assume that O is a bounded domain in RN , with a boundary ∂O of class C1. Suppose that v1, v2 ∈ L∞(O) satisfy
v1 ≤ v2. Let, for i = 1, 2, ui ∈ W 2,r(O), for some r > N, be such that ∥∇ui∥∞ < 1 and

−div

∇u/


1 − |∇u|2


= vi a.e. in O.
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Then

u1 ≤ u2 − min
∂O

(u2 − u1). (4)

Proof. Fix v ∈ L∞(O) and suppose that u ∈ W 2,r(O), for some r > N , is such that ∥∇u∥∞ < 1 and

− div

∇u/


1 − |∇u|2


= v a.e. in O. (5)

Let us set

Cu = {z ∈ C0,1(Ō) : ∥∇z∥∞ ≤ 1 and z = u on ∂O}

and define the functional Jv : Cu → R by

Jv(w) =


O


1 − |∇w|2 dx +


O

vw dx,

for all w ∈ Cu. We claim that u maximizes Jv in Cu. Indeed, pick any z ∈ Cu; multiplying (5) by u − z and integrating by
parts, we get

O

∇u · ∇(u − z)
1 − |∇u|2

dx =


O

v(u − z) dx. (6)

By the concavity of the function y →

1 − |y|2, we obtain

O


1 − |∇z|2 dx −


O


1 − |∇u|2 dx ≤


O

∇u · ∇(u − z)
1 − |∇u|2

dx. (7)

Combining (6) and (7) yields

Jv(z) ≤ Jv(u).

Accordingly, we have that u1 and u2 are maximizers of Jv1 in Cu1 and of Jv2 in Cu2 , respectively. Hence Lemma 1.2 in [2]
applies, implying that (4) holds. �

Next we prove a well-posedness result, which is based on the gradient estimates obtained in [2, Corollary 3.4,
Theorem 3.5].

Lemma 2.2. Assume that O is a bounded domain in RN , with a boundary ∂O of class C2, and suppose that v ∈ L∞(O). Then the
problem

−div

∇u/


1 − |∇u|2


= v in O,

u = 0 on ∂O
(8)

has a unique solution u ∈ W 2,r(O) for all finite r ≥ 1. Moreover, for any given Λ > 0 and r > N, there exist constants
ϑ = ϑ(O, Λ) ∈]0, 1[ and c = c(O, Λ, r) > 0 such that, for every v ∈ L∞(O) with ∥v∥∞ ≤ Λ, the following estimates hold:

∥∇u∥∞ < 1 − ϑ (9)

and

∥u∥W2,r ≤ c ∥v∥∞. (10)

Proof (Uniqueness). The uniqueness of solutions of (8) immediately follows from Lemma 2.1.
Existence. Let Λ > 0 and r > N be fixed. Take a function v ∈ L∞(O), with ∥v∥∞ ≤ Λ. We first assume that v further
satisfies v ∈ C0,1(Ō). By [2, Corollary 3.4, Theorem 3.5] there exists a constant ϑ = ϑ(O, Λ) ∈]0, 1[ such that any solution
u ∈ C2(O) ∩ C1(Ō) of (8) satisfies (9) and ∥u∥∞ < 1

2d(Ω). Accordingly, we can modify the differential operator on the left
of the equation in (8) in such a way that [12, Theorem 1] applies, yielding the existence of constants α = α(O, Λ) ∈]0, 1]
and c1 = c1(O, Λ) > 0 such that u ∈ C1,α(Ō) and

∥u∥C1,α < c1.

We can suppose α has been taken so small that W 2,r(O) is compactly imbedded into C1,α(Ō); as a consequence, α and c1
now depend on O, Λ and r too. Let us define

C = {w ∈ C1,α(Ō) : ∥∇w∥∞ < 1 − ϑ, ∥w∥C1,α < c1}.
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C is an open bounded subset of C1,α(Ō) with 0 ∈ C. Pick any w ∈ C̄ and set, for i, j = 1, . . . ,N ,

aij = δija(|∇w|
2) + 2a′(|∇w|

2)∂xiw ∂xjw, (11)

where δij is the Kronecker delta and a(s) = (1 − s)−
1
2 . Consider the Dirichlet problem−

N
i,j=1

aij∂xixju = v in O,

u = 0 on ∂O.

(12)

Note that the coefficients aij belong to C0,α(Ō) and they are uniformly bounded in C0,α(Ō), with bound independent of
w ∈ C̄ and ultimately depending only on O, Λ and r; moreover, the ellipticity constant can be taken equal to 1. According
to the Lr -regularity theory [11, Theorems 9.15, 9.13], problem (12) has a unique solution u ∈ W 2,r(O) (depending on v and
w) and there exists a constant c2 = c2(O, Λ, r) > 0 such that

∥u∥W2,r ≤ c2(∥u∥Lr + ∥v∥Lr ).

By [11, Theorem 9.1] there is also a constant c3 = c3(O, Λ, r) > 0 such that

∥u∥∞ ≤ c3∥v∥Lr .

Combining these two estimates yields

∥u∥W2,r ≤ c ∥v∥Lr (13)

for some constant c = c(O, Λ, r) > 0 (depending only on the indicated quantities). Moreover, as u ∈ C1,α(Ō), v ∈ C0,1(Ō)
and aij ∈ C0,α(Ō), for i, j = 1, . . . ,N , the Schauder regularity theory [11, Corollary 6.9] applies locally and allows us to
conclude that u ∈ C2,α(O); hence, in particular, u ∈ W 2,r(O) ∩ C2(O).

Let us denote by L : C̄ → C1,α(Ō) the operator which sends each w ∈ C̄ onto the unique solution u ∈ C1,α(Ō) of (12).
Let us verify that L is completely continuous. We first prove that L has a relatively compact range. Let (wn)n be a sequence
in C̄. By (13) the sequence (L(wn))n is bounded in W 2,r(O). Hence there exists a subsequence (L(wnk))k which converges
weakly in W 2,r(O) and strongly in C1,α(Ō) to some u ∈ W 2,r(O). The continuity can be verified as follows. Let (wn)n be a
sequence in C̄ converging in C1,α(Ō) to some w ∈ C̄. We want to prove that (L(wn))n converges in C1,α(Ō) to L(w). Let us
consider any subsequence (L(wnk))k of (L(wn))n and verify that it has a subsequence converging toL(w). Arguing as above,
there exists a subsequence (L(wnkj

))j which converges weakly in W 2,r(O) and strongly in C1,α(Ō) to some u ∈ W 2,r(O).
As each unkj

= L(wnkj
) satisfies problem (12), we can pass to the limit, concluding that u is a solution of (12) and hence, by

uniqueness, u = L(w).
We further observe that u is a solution of (8) if and only if u is a fixed point of L. In order to prove the existence of a fixed

point of L, we show that every solution u ∈ C̄ of

u = tL(u), (14)

for some t ∈ [0, 1], belongs to C. Note that (14) is equivalent to
−div


∇u/


1 − |∇u|2


= tv in O,

u = 0 on ∂O.
(15)

As ∥tv∥∞ ≤ Λ and v ∈ C0,1(Ō), we conclude by the previous argument that any solution u of (15) is such that
u ∈ W 2,r(O) ∩ C2(O), ∥∇u∥∞ < 1 − ϑ, ∥u∥C1,α < c1, and hence u ∈ C. Accordingly, the Leray–Schauder continuation
theorem yields the existence of a fixed point u ∈ C of L and therefore of a solution of (8), which satisfies (9) and (13).

The general case of a function v ∈ L∞(O), with ∥v∥∞ ≤ Λ, can be easily dealt with by approximation. Fix r > N and
let (vn)n be a sequence in C0,1(Ō) converging to v in Lr(O) and satisfying ∥vn∥∞ ≤ Λ for all n. The corresponding solutions
(un)n of (8) satisfy (9) and (13). Arguing as above, we can extract a subsequence of (un)n which converges weakly inW 2,r(O)
to a solution u of (8). Clearly, estimate (9) is valid, possibly reducing ϑ . By the weak lower semicontinuity of theW 2,r -norm,
(13) and hence (10) hold true as well. �

By Lemma 2.2 we can define an operator K : L∞(O) → C1
0 (Ō) which sends any function v ∈ L∞(O) onto the unique

solution u ∈ C1
0 (Ō) of (8). Arguing as in the proof of Lemma 2.2, the following statement can be proved.

Lemma 2.3. Assume that O is a bounded domain inRN , with a boundary ∂O of class C2. ThenK : L∞(O) → C1
0 (Ō) is completely

continuous.
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The following results follow from the maximum principle.

Lemma 2.4. Assume that O is a bounded domain in RN , with a boundary ∂O of class C2. Then, for any given Λ > 0, there exists
a constant d = d(O, Λ) > 0 such that, for every v ∈ L∞(O) with ∥v∥∞ ≤ Λ, the solution u of (8) satisfies

∥u+
∥∞ ≤ d ∥v+

∥∞.

Proof. As already observed in the proof of Lemma 2.2, u satisfies (12), where now the coefficients aij, for i, j = 1, . . . ,N , are
given by (11) with w replaced by u. Then [11, Theorem 9.1] immediately yields the conclusion. �

Lemma 2.5. Assume that O and O0 are bounded domains in RN , with boundaries ∂O, ∂O0 of class C2, satisfying Ō0 ⊂ O. Let
v ∈ L∞(O) be such that v > 0 in O0 and suppose that the solution u of (8) satisfies u ≥ 0 in O. Then minŌ0 u > 0.

Proof. As already observed in the proof of Lemma 2.2, u satisfies (12). Then the strong maximum principle (see, e.g.,
[16, Theorem 3.27]) implies that u(x) > 0 for every x ∈ O0. Suppose that u(x0) = 0 at some x0 ∈ ∂O0 ⊂ O. By the
Hopf boundary lemma (see, e.g., [16, Lemma 3.26]), we have ∂u

∂ν
(x0) < 0, thus contradicting the assumptions u ∈ C1(Ō) and

u ≥ 0 in O. �

Lemma 2.6. Assume that O is a bounded domain in RN , with a boundary ∂O of class C2. Fix a constant k ≥ 0. Let v ∈ L∞(O)
be such that v > 0 in O and let u be a solution of

−div

∇u/


1 − |∇u|2


+ ku = v in O,

u = 0 on ∂O.

Then u ≫ 0.

Proof. The conclusions follow as in the proof of Lemma 2.5 from the strong maximum principle and the Hopf boundary
lemma. �

We conclude with an existence result for the radially symmetric problem taken from [7].

Proposition 2.7. Let us consider the Dirichlet problem
−div


∇u/


1 − |∇u|2


= ν up in B,

u = 0 on ∂B,
(16)

where B is an open ball in RN and ν > 0, p > 0 are given. The following conclusions hold:

(i) if p ∈]0, 1[, then for every ν > 0 problem (16) has at least one (radially symmetric) solution u ∈ C2(B̄) satisfying u ≫ 0 in
B̄;

(ii) if p ≥ 1, then there exists ν∗ > 0 such that, for every ν > ν∗, problem (16) has at least one (radially symmetric) solution
u ∈ C2(B̄) satisfying u ≫ 0 in B̄.

Proof. Looking for radially symmetric solutions of (16), we consider the one-dimensional problem
−


rN−1u′/


1 − (u′)2

′

= ν rN−1up in ]0, R[,
u′(0) = 0, u(R) = 0,

(17)

where R is the radius of the ball B. An a-priori estimate devised in [6,7] allows us to reduce (17) to an equivalent non-
singular problem. Then positive solutions can be found as minimizers of the associated action functional. In particular, if
p ∈]0, 1[, applying [7, Proposition 3.4] yields the existence, for every ν > 0, of a positive solution of (17). If p ≥ 1, applying
[7, Proposition 3.3] yields the existence of ν∗ > 0 such that, for every ν > ν∗, there is a positive solution of (17). These
solutions give rise to positive solutions of (16). It is observed in [7, Remark 3.4] that all such solutions belong to C2(B̄).
Finally, Lemma 2.6 implies that they are strictly positive in B̄. �

3. Existence and multiplicity results

Let us consider the Dirichlet problem (3) with f (x, s, ξ) = λa(x, s, ξ) + µb(x, s, ξ), that is
−div


∇u/


1 − |∇u|2


= λa(x, u, ∇u) + µb(x, u, ∇u) in Ω,

u = 0 on ∂Ω.
(18)

We assume that λ ≥ 0, µ ≥ 0,
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(h1) Ω is a bounded domain in RN , with a boundary ∂Ω of class C2,

and

(h2) a, b : Ω ×

0, 1

2d(Ω)

× B̄1(0) → R satisfy the Carathéodory conditions and

ess sup
Ω×


0, 12 d(Ω)


×B̄1(0)

|a| < +∞ and ess sup
Ω×


0, 12 d(Ω)


×B̄1(0)

|b| < +∞.

We look here for positive (strong strictly spacelike) solutions u of (18). We recall that u is positive if it is non-trivial and
non-negative, i.e., u > 0. In some cases we will be able to show that it is strictly positive, i.e., u ≫ 0.

The following assumptions will be considered:

(a1) there exist an open ball B ⊆ Ω, a1 > 0 and p1 ∈]0, 1[ such that a1sp1 ≤ a(x, s, ξ) for a.e. x ∈ B, all s ∈

0, 1

2d(Ω)

and

all ξ ∈ B̄1(0);
(a2) 0 ≤ a(x, 0, ξ) for a.e. x ∈ Ω and all ξ ∈ B̄1(0);
(a3) there exist a2 > 0 and p2 ∈]0, 1[ such that a(x, s, ξ) ≤ a2sp2 for a.e. x ∈ Ω , all s ∈


0, 1

2d(Ω)

and all ξ ∈ B̄1(0);

(b1) there exist an open ball B ⊆ Ω, b1 > 0 and q1 ∈ [1, +∞[ such that b1sq1 ≤ b(x, s, ξ) for a.e. x ∈ B, all s ∈

0, 1

2d(Ω)

and

all ξ ∈ B̄1(0);
(b2) 0 ≤ b(x, 0, ξ) for a.e. x ∈ Ω and all ξ ∈ B̄1(0);
(b3) there exist b2 > 0 and q2 ∈]1, +∞[ such that b(x, s, ξ) ≤ b2sq2 for a.e. x ∈ Ω , all s ∈


0, 1

2d(Ω)

and all ξ ∈ B̄1(0).

Theorem 3.1. Assume (h1) and (h2). The following conclusions hold:

(i) if µ = 0 and (a1) and (a2) are satisfied, then for every λ > 0 problem (18) has at least one positive solution;
(ii) if λ = 0 and (b1) and (b2) are satisfied, then there exists µ∗ > 0 such that, for every µ > µ∗, problem (18) has at least one

positive solution;
(iii) if λ = 0 and (b1)–(b3) are satisfied, then there exists µ∗ > 0 such that, for every µ > µ∗, problem (18) has at least two

positive solutions;
(iv) if (a1)–(a3), (b1)–(b3) are satisfied, B denoting the same ball in (a1) and (b1), then there exist µ∗ > 0 and a function

λ(·) :]µ∗, +∞[→ R such that, for every µ > µ∗ and all λ ∈]0, λ(µ)[, problem (18) has at least three positive solutions.

Proof. Step 1. An equivalent problem. Fix λ ≥ 0 and µ ≥ 0. Assume (h1), (h2), and (a2) in case λ > 0, (b2) in case µ > 0.
Define the functions ā, b̄, f̄ : Ω ×


−

1
2d(Ω), 1

2d(Ω)

× B̄1(0) → R by setting, for a.e. x ∈ Ω and all ξ ∈ B̄1(0),

ā(x, s, ξ) =


a(x, 0, ξ) if −

1
2
d(Ω) ≤ s < 0,

a(x, s, ξ) if 0 ≤ s ≤
1
2
d(Ω),

b̄(x, s, ξ) =


b(x, 0, ξ) if −

1
2
d(Ω) ≤ s < 0,

b(x, s, ξ) if 0 ≤ s ≤
1
2
d(Ω),

and

f̄ = λā + µb̄.

The modified functions ā and b̄ share the assumed properties of a and b, respectively.
Notice that any non-trivial solution u of the Dirichlet problem

−div

∇u/


1 − |∇u|2


= λā(x, u, ∇u) + µb̄(x, u, ∇u) in Ω,

u = 0 on ∂Ω
(19)

is positive. Indeed, as f̄ (x, s, ξ) ≥ 0 for a.e. x ∈ Ω , all s ∈

−

1
2d(Ω), 0


and all ξ ∈ B̄1(0), multiplying the equation in (19)

by u−
∈ C0,1(Ω̄) and integrating by parts, we have

0 ≤


Ω

f̄ (x, u, ∇u)u− dx =


Ω

∇u · ∇(u−)
1 − |∇u|2

dx = −


Ω

|∇(u−)|2
1 − |∇(u−)|2

dx ≤ 0

and hence ∇(u−) = 0 a.e. in Ω . As u−
= 0 on ∂Ω , we conclude that u−

= 0 in Ω . Therefore a function u is a positive
solution of (18) if and only if it is a non-trivial solution of (19).

We set

D = {u ∈ C1
0 (Ω̄) : ∥∇u∥∞ < 1}
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and let Nλ,µ : D̄ → L∞(Ω) be the superposition operator associated with f̄ , that is,

Nλ,µ(u) = f̄ (·, u, ∇u).

By (h2) Nλ,µ is continuous and has a bounded range. Hence, by Lemma 2.3, the operator Tλ,µ : D̄ → C1
0 (Ω̄), defined by

Tλ,µ = K ◦ Nλ,µ,

is completely continuous. Clearly, a function u is a positive solution of (18) if and only if u ∈ D and is a non-trivial fixed
point of Tλ,µ.

Step 2. Proof of (i). Take µ = 0 and fix λ > 0. Assume (h1), (h2), (a1) and (a2). For the sake of simplicity, the operators Nλ,0
and Tλ,0 will be denoted by N and T , respectively. Set

Λa = λ∥ā∥∞

and let ϑa ∈]0, 1[ be the constant ϑa = ϑ introduced in Lemma 2.2, with Λ = Λa.
Let us consider the Dirichlet problem

−div

∇u/


1 − |∇u|2


= λa1up1 in B,

u = 0 on ∂B,
(20)

with B, a1 and p1 defined in (a1). Without restrictions, we can suppose that B̄ ⊂ Ω . By Proposition 2.7 there exists a solution
α ∈ C2(B̄) of (20) satisfying ∥α∥∞ ≤

1
2d(Ω) and α ≫ 0 in B̄. Let us extend α to a function α̃ ∈ C1(Ω̄) satisfying ∥∇α̃∥∞ ≤ 1

and

−
1
2d(Ω) < α̃(x) < 0

for all x ∈ Ω̄ \ B̄. We define the open bounded subset of C1
0 (Ω̄)

U0 = {u ∈ C1
0 (Ω̄) : u ≫ α̃, ∥∇u∥∞ < 1 − ϑa}

and v0 ∈ L∞(Ω) by setting, for a.e. x ∈ Ω ,

v0(x) = λā

x, α̃(x), ∇α̃(x)


.

Observe that v0 ≥ 0 in Ω , by definition of ā, v0 > 0 in B, by (a1), and ∥v0∥∞ ≤ Λa. Let z0 be the solution of the Dirichlet
problem

−div

∇u/


1 − |∇u|2


= v0 in Ω,

u = 0 on ∂Ω.

Notice that, by Lemma 2.6, z0 ≫ 0 in Ω̄ .

Claim. T has no fixed points on ∂U0 and

deg(I − T , U0, 0) = 1.

We first prove that

deg(I − z0, U0, 0) = 1.

It suffices to show that z0 belongs to U0. The condition ∥∇z0∥∞ < 1 − ϑa is satisfied by the definition of ϑa. It remains to
prove that z0 ≫ α̃ in Ω̄ . Since z0 ≥ 0 in Ω and α̃(x) < 0 for all x ∈ Ω̄ \ B̄, we only need to verify that z0(x) > α(x) for all
x ∈ B̄. Since z0 ≫ 0 in Ω̄ , we have minB̄ z0 > 0. Moreover, as λa1αp1 ≤ v0 in B by (a1), we get, by Lemma 2.1,

α(x) ≤ z0(x) − min
∂B

z0 < z0(x),

for all x ∈ B̄.
Next we consider the homotopy H : [0, 1] × D̄ → C1

0 (Ω̄) defined by

H(t, u) = K

tN (u) + (1 − t)v0


.

By the properties of the operators K and N , H is completely continuous. Observe that

H(0, u) = z0 and H(1, u) = T (u),
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for all u ∈ D̄ . Fix now t ∈ [0, 1] and suppose that u ∈ Ū0 is a fixed point of H(t, ·). We will prove that u ∈ U0. Since u is a
fixed point of H(t, ·), u is a solution of

−div

∇u/


1 − |∇u|2


= tλā(x, u, ∇u) + (1 − t)v0 in Ω,

u = 0 on ∂Ω.

Observe that

tλā(x, s, ξ) + (1 − t)v0(x) ≥ 0

for a.e. x ∈ Ω , all s ∈

−

1
2d(Ω), 0


and all ξ ∈ B̄1(0). Arguing as in Step 1, we see that u ≥ 0 in Ω . Moreover, as

tλā(·, u, ∇u) + (1 − t)v0 > 0

in B, by Lemma 2.5 we deduce that

min
B̄

u > 0. (21)

Let us prove that u ≫ α̃ in Ω̄ . As above we observe that, since u ≥ 0 in Ω and α̃(x) < 0 for all x ∈ Ω̄ \ B̄, we only need to
verify that u(x) > α(x) for all x ∈ B̄. Note that, using (a1) and u ∈ Ū0, we have

tλā(·, u, ∇u) + (1 − t)v0 ≥ tλa1up1 + (1 − t)λā

·, α,∇α


≥ λa1αp1

in B. Applying Lemma 2.1 and recalling (21), we get

α(x) ≤ u(x) − min
∂B

u < u(x)

for all x ∈ B̄.
Furthermore, as

∥tλā(·, u, ∇u) + (1 − t)v0∥∞ ≤ Λa,

Lemma 2.2 yields

∥∇u∥∞ < 1 − ϑa.

In conclusion, u ∈ U0. The homotopy invariance of the degree implies that

deg(I − T , U0, 0) = deg(I − z0, U0, 0) = 1.

This concludes the proof of the claim.
Therefore, for every λ > 0, there exists a non-trivial fixed point u of the operator T in U0, i.e., there exists a positive

solution u of (18) satisfying u ≫ α̃ in Ω̄ .
Step 3. Proof of (ii). The proof is essentially the same as the proof of (i) in Step 2. Take λ = 0 and µ > 0. Assume
(h1), (h2), (b1) and (b2). For the sake of simplicity, the operators N0,µ and T0,µ will be denoted simply by N and T ,
respectively. Set

Λb = µ∥b̄∥∞

and let ϑb ∈]0, 1[ be the constant ϑb = ϑ introduced in Lemma 2.2, with Λ = Λb.
Let us consider the Dirichlet problem

−div

∇u/


1 − |∇u|2


= µb1uq1 in B,

u = 0 on ∂B,
(22)

with B, b1 and q1 defined in (b1). Again, we can suppose that B̄ ⊂ Ω . By Proposition 2.7 there exists a constant µ∗ > 0 such
that, for any µ > µ∗, problem (22) has at least one solution α1 ∈ C2(B̄) satisfying α1 ≫ 0 in B̄ and ∥α1∥∞ ≤

1
2d(Ω). As in

Step 2, we extend α1 to a function α̃1 ∈ C1(Ω̄) satisfying ∥∇α̃1∥∞ ≤ 1 and

−
1
2d(Ω) < α̃1(x) < 0

for all x ∈ Ω̄ \ B̄. We define the open bounded set

U1 = {u ∈ C1
0 (Ω̄) : u ≫ α̃1, ∥∇u∥∞ < 1 − ϑb}

and v1 ∈ L∞(Ω) by setting, for a.e. x ∈ Ω ,

v1(x) = µb̄

x, α̃1(x), ∇α̃1(x)


.
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The proof continues exactly as in Step 2, by showing that T has no fixed points on ∂U1 and

deg(I − T , U1, 0) = 1.

Therefore we conclude that, for all µ > µ∗, there exists a non-trivial fixed point u of T in U1, i.e., there exists a positive
solution u of (18) satisfying u ≫ α̃1 in Ω̄ .
Step 4. Proof of (iii). Take λ = 0 and µ > 0. Assume (h1), (h2), (b1), (b2) and (b3). Note that (b1) and (b3) together imply
q1 > 1. As in Step 3, the operators N0,µ and T0,µ will be denoted simply by N and T , respectively. Let µ∗ be the constant,
whose existence was proved in Step 3, such that problem (18) has at least one positive solution for all µ > µ∗. Fix µ > µ∗

and let u1 ∈ U1 be a corresponding solution. Let us prove the existence of a second positive solution.
For each r > 0 we set

Ur
2 = {u ∈ C1

0 (Ω̄) : ∥u∥∞ < r, ∥∇u∥∞ < 1 − ϑb},

with ϑb defined in Step 3.

Claim. There exists r̂ > 0 such that, for each r ∈]0, r̂], T has no fixed points on ∂Ur
2 and

deg

I − T , Ur

2, 0


= 1.

Consider the homotopy H : [0, 1] × D̄ → C1
0 (Ω̄) defined by

H(t, u) = K

tN (u)


.

By the properties of the operators K and N , H is completely continuous. We have

H(0, u) = 0 and H(1, u) = T (u),

for all u ∈ D̄ . Fix t ∈ [0, 1] and suppose that u ∈ Ūr
2 is a fixed point of H(t, ·). We will prove that u ∈ Ur

2. Since u is a fixed
point of H(t, ·), u is a solution of

−div

∇u/


1 − |∇u|2


= tµb̄(x, u, ∇u) in Ω,

u = 0 on ∂Ω.
(23)

Multiplying the equation in (23) by u and integrating by parts, we obtain by (b3)

∥∇u∥2
L2 ≤


Ω

∇u · ∇u
1 − |∇u|2

dx =


Ω

tµb̄(x, u, ∇u)u dx

≤ µb2


Ω

|u|q2+1 dx ≤ µb2rq2−1


Ω

u2 dx ≤ µb2cP rq2−1
∥∇u∥2

L2 ,

where cP > 0 is the Poincaré constant. Hence there exists a sufficiently small r̂ > 0 such that, for every r ∈]0, r̂], we have
∥∇u∥L2 = 0 and therefore u = 0. The homotopy invariance of the degree implies that

deg(I − T , Ur
2, 0) = 1.

This concludes the proof of the claim.
We finally set

U3 = {u ∈ C1
0 (Ω̄) : ∥∇u∥∞ < 1 − ϑb}.

Using the definition of ϑb and arguing as above, we easily see that

deg(I − T , U3, 0) = 1.

Let us fix r ∈]0,min{∥α̃1∥∞, r̂}], with α̃1 defined in Step 3. Notice that the sets U1 and Ur
2, previously defined, are disjoint

and both contained in U3. Let us define

W r
= U3 \ ( U1 ∪ Ur

2 ).

As T has no fixed point in ∂U1 ∪ ∂Ur
2 ∪ ∂U3, by the excision and the additivity properties of the degree, we have

deg(I − T , U3, 0) = deg(I − T , U3 \ (∂U1 ∪ ∂Ur
2), 0)

= deg(I − T , U1, 0) + deg(I − T , Ur
2, 0) + deg(I − T , W r , 0)

and hence

deg(I − T , W r , 0) = −1.
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In particular, there exists a fixed point u2 of T such that ∥u2∥∞ > r and for which the condition u2 ≫ α̃1 in Ω̄ does not
hold. Therefore u2 is a positive solution of (18) which differs from u1. We conclude that, for all µ > µ∗, there exist at least
two positive solutions of (18).
Step 5. Proof of (iv). Take λ > 0 and µ > 0. Assume (h1), (h2), (a1), (a2), (a3), (b1), (b2) and (b3), B denoting the same ball
in (a1) and (b1). Suppose also that B̄ ⊂ Ω . As already noticed in Step 4, we have q1 > 1. Let µ∗ be the constant, introduced
in Step 3, such that problem (18), with λ = 0, has at least one positive solution for all µ > µ∗. Fix µ > µ∗, set

Λ = ∥ā∥∞ + µ∥b̄∥∞

and let ϑ ∈]0, 1[ be the constant introduced in Lemma 2.2. Let us take an open ball B2, with B̄2 ⊂ B, and consider, for
λ ∈]0, 1], the Dirichlet problem

−div

∇u/


1 − |∇u|2


= λa1up1 in B2,

u = 0 on ∂B2.
(24)

By Proposition 2.7 there exists a solution αλ
2 ∈ C2(B̄2) of (24) satisfying αλ

2 ≫ 0 in B̄2 and ∥αλ
2∥∞ ≤

1
2d(Ω).

Fix r > N and denote by c ′

0 > 0 the constant, dependent on Λ, B2 and r , whose existence follows from Lemma 2.2, with
O = B2, such that

∥u∥∞ ≤ c ′

0∥v∥∞

holds for all v ∈ L∞(B2) satisfying ∥v∥∞ ≤ Λ. Similarly, denote by c ′′

0 > 0 the constant, dependent on Λ, Ω and r , whose
existence follows from Lemma 2.2, with O = Ω , such that

∥u∥∞ ≤ c ′′

0∥v∥∞

holds for any v ∈ L∞(Ω) satisfying ∥v∥∞ ≤ Λ. Set

c1 = Λ max{c ′

0, c
′′

0 }

and

rλ = λ(c1 + 1).

Observe that, since by (a1)

∥a1(αλ
2 )

p1∥∞ ≤ Λ,

we have

∥αλ
2∥∞ ≤ c ′

0Λλ ≤ c1λ.

As in Step 3, let α1 be a solution of the Dirichlet problem
−div


∇u/


1 − |∇u|2


= µb1uq1 in B,

u = 0 on ∂B.

Since α1 ≫ 0 in B̄, we have minB̄2 α1 > 0. Therefore we can take λ̄ ∈]0, 1] such that, for all λ ∈]0, λ̄[,

rλ < min
B̄2

α1.

For all λ ∈]0, λ̄[ we extend α1 to a function α̃λ
1 ∈ C1(Ω̄) and αλ

2 to a function α̃λ
2 ∈ C1(Ω̄) such that ∥∇α̃λ

1∥∞ ≤ 1,
∥∇α̃λ

2∥∞ ≤ 1,

∥α̃λ
2∥∞ ≤ rλ,

−
1
2d(Ω) < α̃λ

2 (x) < α̃λ
1 (x) < 0

for all x ∈ Ω̄ \ B̄ and

−
1
2d(Ω) < α̃λ

2 (x) < 0

for all x ∈ B̄ \ B̄2.
We define, for every λ ∈]0, λ̄[, the open bounded sets

Vλ
1 = {u ∈ C1

0 (Ω̄) : u ≫ α̃λ
1 , ∥∇u∥∞ < 1 − ϑ}

and

Vλ
2 = {u ∈ C1

0 (Ω̄) : u ≫ α̃λ
2 , ∥u∥∞ < rλ, ∥∇u∥∞ < 1 − ϑ}.
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We also set, for a.e. x ∈ Ω ,

vλ
1 (x) = µb̄


x, α̃λ

1 (x), ∇α̃λ
1 (x)


and

vλ
2 (x) = λā


x, α̃λ

2 (x), ∇α̃λ
2 (x)


.

For every λ ∈]0, λ̄[ let zλ
1 be the solution of the Dirichlet problem

−div

∇u/


1 − |∇u|2


= vλ

1 in Ω,

u = 0 on ∂Ω.

Arguing as in the claim of Step 2, we easily verify that Tλ,µ has no fixed points on ∂Vλ
1 and

deg(I − Tλ,µ, Vλ
1 , 0) = 1.

For every λ ∈]0, λ̄[ let zλ
2 be the solution of the Dirichlet problem

−div

∇u/


1 − |∇u|2


= vλ

2 in Ω,

u = 0 on ∂Ω.

Claim. There exists λ(µ) ∈]0, λ̄] such that, for all λ ∈]0, λ(µ)[, Tλ,µ has no fixed points on ∂Vλ
2 and

deg(I − Tλ,µ, Vλ
2 , 0) = 1.

We first prove that

deg(I − zλ
2 , Vλ

2 , 0) = 1.

It suffices to show that zλ
2 ∈ Vλ

2 . Arguing as in Step 2, we easily see that ∥∇zλ
2∥∞ < 1 − ϑ and zλ

2 ≫ αλ
2 in Ω̄ . Furthermore

we have, as remarked above,

∥zλ
2∥∞ ≤ c ′′

0Λλ ≤ c1λ < rλ.

Next we consider the homotopy H : [0, 1] × D̄ → C1
0 (Ω̄) defined by

H(t, u) = K

tNλ,µ(u) + (1 − t)vλ

2


.

By the properties of the operators K and Nλ,µ, H is completely continuous. Observe that

H(0, u) = zλ
2 and H(1, u) = Tλ,µ(u),

for all u ∈ D̄ .
Fix now t ∈ [0, 1] and suppose that u ∈ V̄λ

2 is a fixed point of H(t, ·). We will prove that u ∈ Vλ
2 . Arguing as in Step 2

we easily verify that u ≥ 0 in Ω and

min
B̄2

u > 0. (25)

Let us prove that u ≫ α̃λ
2 in Ω̄ . Since u ≥ 0 in Ω and α̃λ

2 (x) < 0 for all x ∈ Ω̄ \ B̄2, we only need to verify that u(x) > αλ
2 (x)

for all x ∈ B̄2. Note that

t f̄ (·, u, ∇u) + (1 − t)vλ
2 ≥ tλa1up1 + (1 − t)λā


·, αλ

2 , ∇αλ
2


≥ λa1(αλ

2 )
p1

in B2. Applying Lemma 2.1 and recalling that (25) holds, we get

αλ
2 (x) ≤ u(x) − min

∂B2
u < u(x)

for all x ∈ B̄2.
Furthermore, ast f̄ (·, u, ∇u) + (1 − t)vλ

2


∞

≤ Λ,

Lemma 2.2 yields

∥∇u∥∞ < 1 − ϑ.
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Finally, we verify that ∥u∥∞ < rλ if λ is sufficiently small. Since both

∥u∥∞ ≤ rλ

and

∥α̃λ
2∥∞ ≤ rλ

hold, we have

t f̄ (·, u, ∇u) + (1 − t)vλ
2 ≤ t


λa2∥u∥p2

∞
+ µb2∥u∥q2

∞


+ (1 − t)λa2∥α̃λ

2∥
p2
∞

≤ t

a2(c1 + 1)p2λp2+1

+ µb2(c1 + 1)q2λq2

+ (1 − t)a2(c1 + 1)p2λp2+1

≤ a2(c1 + 1)p2λp2+1
+ µb2(c1 + 1)q2λq2 ≤ c2λ1+ε

in Ω , where c2 > 0 is a constant independent of λ and ε = min{p2, q2 − 1}. Applying Lemma 2.4, we obtain

∥u∥∞ ≤ c3λ1+ε,

where c3 > 0 is a constant independent of λ. Let λ(µ) ∈]0, λ̄[ be such that λ(µ) ≤


c1+1
c3

 1
ε
. Then, for each λ ∈]0, λ(µ)[,

the inequality ∥u∥∞ < rλ holds and, hence, u ∈ Vλ
2 . The homotopy invariance of the degree implies then that

deg(I − Tλ,µ, Vλ
2 , 0) = 1.

This concludes the proof of the claim.
Observe thatVλ

1 andVλ
2 are disjoint because of the choice of λ. Therefore problem (18) has at least two positive solutions

u1 and u2 such that u1 ≫ α̃λ
1 and ∥u2∥∞ < rλ. To conclude the proof we define, for all λ ∈]0, λ(µ)[,

Vλ
3 = {u ∈ C1

0 (Ω̄) : u ≫ α̃λ
2 , ∥∇u∥∞ < 1 − ϑ}.

We also set

Wλ
= Vλ

3 \ ( Vλ
1 ∪ Vλ

2 ).

Fix λ ∈]0, λ(µ)[. Arguing as in the first part of the previous claim, we easily verify that

deg(I − Tλ,µ, Vλ
3 , 0) = 1.

By the excision and the additivity properties of the degree, we obtain

deg(I − Tλ,µ, Wλ, 0) = −1.

In particular, there exists a fixed point u3 of Tλ,µ such that ∥u3∥∞ > rλ and for which the condition u3 ≫ α̃λ
1 in Ω̄ does not

hold. Therefore u3 is a positive solution of (18) which differs both from u1 and from u2. We conclude that, for every µ > µ∗

and all λ ∈]0, λ(µ)[, problem (18) has at least three positive solutions. �

Remark 3.1. Assume (h1), (h2) and

(b4) there exists b3 > 0 such that b(x, s, ξ) ≥ −b3s for a.e. x ∈ Ω , all s ∈

0, 1

2d(Ω)

and all ξ ∈ B̄1(0).

Let u be a positive solution of the problem
−div


∇u/


1 − |∇u|2


= µb(x, u, ∇u) in Ω,

u = 0 on ∂Ω,
(26)

for some µ > 0. Then u is strictly positive. Indeed, rewrite the equation in (26) as

−div

∇u/


1 − |∇u|2


+ ku = µb(x, u, ∇u) + ku

with k = µb3 + 1. As the right-hand side of the equation is positive, Lemma 2.6 yields the conclusion.

The following non-existence result for problem (26) holds.

Proposition 3.2. Assume (h1), (h2) and

(b5) there exists b4 > 0 such that b(x, s, ξ) ≤ b4s for a.e. x ∈ Ω , all s ∈

0, 1

2d(Ω)

and all ξ ∈ B̄1(0).

Then there exists µ∗ > 0 such that, for every µ ∈]0, µ∗[, problem (26) has no positive solutions.
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Proof. Let u be a positive solution of (26) for some µ > 0. Multiplying the equation in (26) by u and integrating by parts,
we easily obtain by (b5)

∥∇u∥2
L2 ≤ µb4


Ω

u2 dx ≤ µb4cP∥∇u∥2
L2 ,

where cP > 0 is the Poincaré constant. This implies that µ ≥ (b4cP)−1. �
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