期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:444
Rademacher functions in Morrey spaces
Article
Astashkin, Sergei V.1,2  Maligranda, Lech3 
[1] Samara State Univ, Dept Math & Mech, Acad Pavlova 1, Samara 443011, Russia
[2] SSAU, Moskovskoye Shosse 34, Samara 443086, Russia
[3] Lulea Univ Technol, Dept Math, SE-97187 Lulea, Sweden
关键词: Rademacher functions;    IViorrey spaces;    Korenblyum-Krein-Levin spaces;    Marcinkiewicz spaces;    Complemented subspaces;   
DOI  :  10.1016/j.jmaa.2016.07.008
来源: Elsevier
PDF
【 摘 要 】

The Rademacher sums are investigated in the Morrey spaces M-p,M-w on [0,1] for 1 <= p < infinity and weight w being a quasi-concave function. They span l(2) space in M-p,M-w if and only if the weight w is smaller than log(2)(-1/2) 2/t on (0,1). Moreover, if 1 < p < infinity the Rademacher subspace R-p,R-w is complemented in M-p,M-w if and only if it is isomorphic to l(2). However, the Rademacher subspace R-1,R-w is not complemented in M-1,M-w for any quasi-concave weight w. In the last part of the paper geometric structure of Rademacher subspaces in Morrey spaces M-p,M-w is described. It turns out that for any infinite-dimensional subspace X of R-p,R-w the following alternative holds: either X is isomorphic to l(2) or X contains a subspace which is isomorphic to c(0) and is complemented in R-p,R-w. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2016_07_008.pdf 474KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次