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1. Introduction and preliminaries

The well-known Morrey spaces introduced by Morrey in 1938 [20] in relation to the study of partial
differential equations were widely investigated during last decades, including the study of classical operators
of harmonic analysis: maximal, singular and potential operators—in various generalizations of these spaces.
In the theory of partial differential equations, along with the weighted Lebesgue spaces, Morrey-type spaces
also play an important role. They appeared to be quite useful in the study of the local behavior of the
solutions of partial differential equations, a priori estimates and other topics.

Let 0 < p < oo, w be a non-negative non-decreasing function on [0,00), and  a domain in R™. The
Morrey space M, ., = My, .,(£2) is the class of Lebesgue measurable real functions f on €2 such that
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1/p
1 p
1fllag,,., = sup wr) | 15 f@OFdt [ < oo, (1)
0<r<diam(Q), o€ ‘ T(l‘0)|
B, (xz0)NQ

where B;.(xg) is a ball with the center at z¢ and radius r. It is a quasi-Banach ideal space on §2. The so-called
ideal property means that if |f| < [g| a.e. on Q and g € M, ,, then f € My, and || f|n,.., < l9llr,.,,- In
particular, if w(r) = 1 then M, ,,(Q) = Loo (), if w(r) = r'/? then M, ,,(Q) = L,(Q2) and in the case when
w(r) = r'/9 with 0 < p < g < 0o M,,,(Q) are the classical Morrey spaces, denoted shortly by M, ,(Q)
(see [14, Part 4.3], [15,23] and [29]). Moreover, as a consequence of the Holder—-Rogers inequality we obtain
monotonicity with respect to p, that is,

1
My, () = My, () i 0<py<p1 <oo.
c
For two quasi-Banach spaces X and Y the symbol X — Y means that the embedding X C Y is continuous
and ||f|ly < C|f|lx forall f e X.
Tt is easy to see that in the case when Q = [0, 1] quasi-norm (1) can be defined as follows

1/p

1. = sup (i) | / sord| @)

where the supremum is taken over all intervals I in [0, 1]. In what follows |E| is the Lebesgue measure of a
set £ C R.
The main purpose of this paper is the investigation of the behavior of Rademacher sums

R,(t) = Zakrk(t), ar €ERfor k=1,2,....n, and n € N
k=1

in general Morrey spaces M, ,,. Recall that the Rademacher functions on [0, 1] are defined by 74(t) =
sign(sin 2F7t), k € N, t € [0, 1].

By Rp,w we denote the subspace spanned by the Rademacher functions 7, k =1,2,... in Mp .

The most important tool in studying Rademacher sums in the classical L,-spaces and in general rear-
rangement invariant spaces is the so-called Khintchine inequality (cf. [11, p. 10], [1, p. 133], [16, p. 66] and
[4, p. 743]): if 0 < p < o0, then there exist constants A,, B, > 0 such that for any sequence of real numbers
{ar}}_, and any n € N we have

AP(Z |ak|2)1 ’ <|[Rullz, 0, < Bp(Z|ak|2>1 g (3)
k=1 k=1

Therefore, for any 1 < p < oo, the Rademacher functions span in L, an isomorphic copy of ls. Also, the
subspace [r,] is complemented in L, for 1 < p < oo and is not complemented in L; since no complemented
infinite dimensional subspace of Ly can be reflexive. In L., the Rademacher functions span an isometric
copy of Iy, which is uncomplemented.

The only non-trivial estimate for Rademacher sums in a general rearrangement invariant (r.i.) space X
on [0, 1] is the inequality

1Rallx < € (X lan?) " (@)

k=1
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where a constant C' > 0 depends only on X. The reverse inequality to (4) is always true because X C Ly
and we can apply the left-hand side inequality from (3) for L;. Already in 1930, Paley and Zygmund [22]
proved estimate (4) for X = G, where G is the closure of L [0, 1] in the Orlicz space L0, 1] generated by
the function M(u) = ¢** — 1. The proof can be found in Zygmund’s classical books (see [30, p. 134] or [31,
p. 214]).

Later on Rodin and Semenov [25] showed that estimate (4) holds if and only if G C X. This inclusion
means that X in a certain sense “lies far” from L..[0,1]. In particular, G is contained in every L,[0,1]
for p < co. Moreover, Rodin-Semenov [26] and Lindenstrauss—Tzafriri [17, pp. 134-138] proved that [r,] is
complemented in X if and only if G C X C G’, where G’ denotes the Kothe dual space to G.

In contrast, Astashkin [3] studied the Rademacher sums in r.i. spaces which are situated very “close”
to Leo. In such a case a rather precise description of their behavior may be obtained by using the real
method of interpolation (cf. [10]). Namely, every interpolation space X between the spaces Lo, and G can
be represented in the form X = (Lo, G)g , for some parameter ® of the real interpolation method, and
then | 2%, aurllx & [{a 332, e, where F = (i, 1)5.

Investigations of Rademacher sums in r.i. spaces are well presented in the books by Lindenstrauss—Tzafriri
[17], Krein-Petunin-Semenov [13] and Astashkin [4]. At the same time, a very few papers are devoted to con-
sidering Rademacher functions in Banach function spaces, which are not r.i. Recently, Astashkin—Maligranda
6] initiated studying the behavior of Rademacher sums in a weighted Korenblyum—Krein-Levin space K, 4,
for 0 < p < oo and a quasi-concave function w on [0, 1], equipped with the quasi-norm

1/p

Il = sp i) (3 [ Iropar 6
0

(cf. [12,18], [28, pp. 469-470], where w(xz) = 1). If the supremum in (2) is taken over all subsets of [0, 1]
of measure x, then we obtain an r.i. counterpart of the spaces M, ., and K, ., the Marcinkiewicz space
Mﬁ)u [0,1], with the quasi-norm

1/p

£y, = sup wie) |5 [ Frora) (6)
0

0<z<1

where f* denotes the non-increasing rearrangement of | f]|.

In what follows we consider only function spaces on [0, 1]. Therefore, the weight w will be a non-negative
non-decreasing function on [0, 1] and without loss of generality we will assume in the rest of the paper that
w(1) = 1. Then, we have

Loo < MO 5 M < Ky <5 L (7)

p,w E

because the corresponding suprema in (5), (2) and (6) are taken over larger classes of subsets of [0, 1].
(%)

Observe that if lim; o+ w(t) > 0, then M, ,, = Mpw = Lo, and if sup0<t§1w(t)t’1/p < 00, then
My = Mﬁ)u = L, with equivalent quasi-norms. To avoid these trivial cases, throughout the paper we will
assume also that

ti/p
lim w(t) = liminf =0. (8)
t—0+ t—0t w(t)

In particular, the latter assumptions ensure that the second and the third inclusions in (7) are proper.
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Proposition 1. (i) K, ., \ M,
(ii) If w(t) t=/? is a non-increasing function on (0,1], then M., \ Mlg*g, # 0.

Proof. (i) In view of (8), there exists a sequence {tp} C (0,1] such that t; N\, 0,t; < 1/2 and

w(ty)ty, Y7 Ao, Let us denote v(t) = w(t) t=/7 and

> 1/p
= Z(v(tk)_p/Z - U(tk-‘rl)_p/Q) (tk - tk-i-l)_l/pX(tkH,tk}(S)'

k=1

By definition, supp g C [0,1/2]. Then, for every k € N

/\g \pds—Z/ s)Pds

1= kt1+1

,i“ P2 —u(tig) P

(t: = tiy1) = o(ty) P>
t; —tip1

=

In particular, we see that g € L,. Let f(t) := g(t + 3) for 0 < ¢ < 1. Then ||f|, = ||g|lp, and therefore
f € L,. Moreover, since suppf C [1/2,1], we obtain f € K, ,,. In fact,

1/p z
w(x 1/p
7l = sup w(a l/Lf Par) = s D2 [iropa)
0<z<1 l<g<1 T
1/2
~ sup /u war)” =7l <.
1<z
1/2
At the same time, if I}, := [$,t, + 1],k =1,2,..., we have
1/p te
I 1 Pq — Pq Ve _ ) -1/2 _ 1/2
w(|1x]) 1A |f)IP dt =v(te)( [ lg(s)IPds)  =w(ty) - v(te) /= =v(ty)/".
I 0

Since v(ty) /' o0 as k — 0o, we conclude that f ¢ M,
(ii) By using the conditions of proposition, it is easy to find a function g € L, \ MIS*J, Next, by the main
result of the paper [2], there exists a function f € M, ., and constants ¢ > 0 and A¢ > 0 such that

{te0,1): 1F® > A Z ¢ |{t e 0,1): 1g(t)] > A}

for all A > \g. Clearly, since g ¢ Méﬂ,, from the last inequality it follows that f ¢ M, (*1)” O

In particular, the proof of Proposition 1 (ii) shows that the Morrey space M, ,, is not an r.i. space
provided that its conditions hold.

For a normed ideal space X = (X, | - ||) on [0, 1] the Kdthe dual (or associated space) X' is the space of
all real-valued Lebesgue measurable functions defined on [0, 1] such that the associated norm
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Iflx == sup / F(@)g(z)| do

9eX, llgllx<1

is finite. The Kothe dual X’ is a Banach ideal space. Moreover, X <y X" and we have X = X" isometrically
if and only if the norm in X has the Fatou property, that is, if 0 < f,,  fa.e. on [0, 1] and sup,,cn || fn|| < 00,
then f € X and [|full /[

Denote by D the set of all dyadic intervals I} = [(k — 1)27",k27"], where n = 0,1,2,... and k =
1,2,...,2". If f and g are nonnegative functions (or quasi-norms), then the symbol f & ¢g means that
C~1g < f < Cgfor some C > 1. Moreover, we write X ~ Y if Banach spaces X and Y are isomorphic.

The paper is organized as follows. After Introduction, in Section 2 the behavior of Rademacher sums in
Morrey spaces is described (see Theorem 1). The main result of Section 3 is Theorem 2, which states that
the Rademacher subspace Ry, 1 < p < 00, is complemented in the Morrey space M, ., if and only if Ry, .
is isomorphic to Iy or equivalently if supg,<; w(t )10g1/2(2/t) < 00. In the case when p = 1 situation is
different, which is the contents of Section 4, where we are proving in Theorem 3 that the subspace R, is
not complemented in M; ,, for any quasi-concave weight w. Finally, in Section 5, the geometric structure of
Rademacher subspaces in Morrey spaces is investigated (see Theorem 4).

2. Rademacher sums in Morrey spaces
We start with the description of behavior of Rademacher sums in the Morrey spaces M), ,, defined by
quasi-norms (2), where 0 < p < oo and w is a non-decreasing function on [0, 1] satisfying the doubling

condition w(2t) < Cyw(t) for all ¢ € (0,1/2] with a certain Cy > 1.

Theorem 1. With constants depending only on p we have

oo
k=1

Proof. Firstly, let 1 < p < oo. Consider an arbitrary interval I € D, ie., I = IJ*, with m € N and
k=1,2,...,2™. Then, for every f =3 7 ajr), we have

P l/p: ma&_ > anr 4 1/p
(I/lf(t)l ) (I/\; et 3 aniof @)

~ |{ar 52 l+sup<w2*m ak.>. 9
g ™ el o+ sup (w27 3 o ©

where g} = sign Tk|1» k=1,2,...,m. Since the functions
m oo
E arcr + Z apry(t) and Z%Ek — Z apri(t)
k=m+1 k=1 k=m+1

are equimeasurable on the interval I, it follows that

(/\f(t)|ﬁdt)l/p: (/’Zaké’kJr Z akrkt‘ )l/p

k=m+1

+ %(/’Zaksk— f: akrk(t)’pdt)l/p,
T k=1

k=m+1

whence by the Minkowski inequality we obtain
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P 1/p
/\f |pdt I/’Zaksk )

=2 -m/p Zaksk‘
k=1
for every m = 1,2,.... Clearly, one may find i € {1,2,...,2™} such that Tkipm = signay, for all k =
1,2,...,m. Therefore, for every m =1,2,...
1/p

1 m
T / sora| =3 jul,
i m k=1

and so

£l > supw (27=™) Z|ak| (10)
k=1

On the other hand, by (7) and (3) we have

1 fllaz,.0 = 1fllz, = Ap [Har}iezilli,-

Combining these inequalities, we obtain

A m
17y 2 57 (Hand 2+ sup w2 )> fanl).

k=1

Let us prove the reverse inequality. For a given interval I C [0, 1] we can find two adjacent dyadic intervals
I, and I5 of the same length such that

1

If |I| = |I2] = 27™, then by the Minkowski triangle inequality and inequality in (3) we have

/|f |pdt /‘Zaksk—i- Z aETk t‘ dt)l/p
/‘Zakak‘ dt 1/p /‘ aka )‘pdt)l/p

+1

1/p
2—’”/1’2|ak|+2 m/p / S o )| at)

0 k=m+1

< 27m/p Z |ak| + 27m/p Bp ||{ak}20=1”l2'
k=1

The same estimate holds also for the integral (| L I f@OP dt)l/ P Therefore, by (11),



S.V. Astashkin, L. Maligranda / J. Math. Anal. Appl. 444 (2016) 1133-1154 1139

(ﬁ/w(t”pdt)lﬁ? < 9l/p (ILl'I/|f(t)|pdt+ %'I/U(t”pdt)l/p

<47 By (3 lanl + Iar}ia s )

k=1
and, by the doubling condition,

m

wllt) (77 /1 Foran)”” <w(@- 270 B, (3 ael + o) i,
I

k=1

< Co- 417 Byuw(@™™) (Y lanl + I} I, )-
k=1

Hence, using definition of the norm in M, ,,, we obtain

171134, < Co 477 By (sup w(2™™) 3 lo| + [ {ax}ia e, )
me k=1

The same proof works also in the case when 0 < p < 1 with the only change that the corresponding
L,-triangle inequality holds with the constant 2l/p=1 g

In the rest of the paper, a weight function w is assumed to be quasi-concave on [0,1], that is, w(0) = 0,
w is non-decreasing, and w(t)/t is non-increasing on (0, 1]. Moreover, as above, we assume that w(1) = 1.

Recall that a basic sequence {z}} in a Banach space X is called subsymmetric if it is unconditional and
is equivalent in X to any subsequence of {zy}.

Corollary 1. For every 1 < p < oo {ri} is an unconditional and not subsymmetric basic sequence in M, .

Corollary 2. Let 1 < p < co. The Rademacher functions span ly space in My, if and only if

sup w(t) log;/2(2/t) < 00. (12)
0<t<1

Proof. If (12) holds, then for all m € N we have w(2~)m!/? < C. Using the Holder-Rogers inequality, we
obtain

w(Q*m) i |ak‘ < U}(27m) (i |ak|2)1/2m1/2 <c (zm: |ak|2) 1/2.
=t k=1 k=1

Therefore, from (9) it follows that || Y77 | ar 7k |la, ., = [{ar -
Conversely, suppose that condition (12) does not hold. Then, by the quasi-concavity of w, there exists a
sequence of natural numbers my — oo such that

w(2*m’“)m,1€/2 — 00 as k — oo. (13)

Consider the Rademacher sums Ry (t) = Zle a¥ r;(t) corresponding to the sequences of coefficients a* =

(aF)™  where af = m;1/27 1 < i < my. We have [|a*||;, =1 for all k = 1,2,... However, > ;"% a¥ =

m,lﬁ/2 (k=1,2,...), which together with (13) and (9) imply that ||Rg||ar, , — 00 as k — oo. O

p,w
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Remark 1. The Rademacher functions span [l in each of the spaces Mé?ﬁ,, My and K, 4, 1 < p < 00 (see
embeddings (7)). In fact, the Orlicz space Ly generated by the function M (u) = ¢’ — 1 coincides with the
Marcinkiewicz space Ml(::? with v(t) = log;1/2(2/t) (cf. [4, Lemma 3.2]). Recalling that G is the closure of
Looin M 1(*13 we note that the embedding G C M, (*12, holds if and only if (12) is satisfied. Therefore, by already
mentioned Rodin—Semenov theorem (cf. [25]; see also [17, Theorem 2.b.4]), the Rademacher functions span
Iy in M,g*g; if and only if (12) holds.

Moreover, it is instructive to compare the behavior of Rademacher sums in the spaces Ml(*i), M, and
K1, in the case when w(t) = logz_l/q(Q/t), where ¢ > 2. Then (12) does not hold and

5o m
[ ], = sl + sup m= 3-ai,
— My, meN k=1

where {a}} is the non-increasing rearrangement of {|ax|}2, (cf. Rodin-Semenov [25, p. 221] and Pisier
[24]; see also Marcus—Pisier [19, pp. 277-278]),

o0 m
|, ~IHadil + sup m™2 " jax| by (9), and
k=1 M meN k=1

(o) m
H Z akrkH ~ |[{ar} |1, + sup m~Y4 ‘ Zak‘ (cf. [6, Theorem 2]).
k=1 Kl,w meN k=1

oo

Now, we pass to studying the problem of complementability of the closed linear span Ry ., = [rn]0%,

in the space M, ,,. Since the results turn out to be different for p > 1 and p = 1, we consider these cases
separately.

3. Complementability of Rademacher subspaces in Morrey spaces M, ,, for p > 1

Theorem 2. Let 1 < p < oo. The subspace Ry, 15 complemented in the Morrey space My ., if and only if
condition (12) holds.

To prove this theorem we will need the following auxiliary assertion.

Proposition 2. If condition (12) does not hold, then the subspace R, ., contains a complemented (in Rp.,)

subspace isomorphic to cg.
Proof. Since w is quasi-concave, by the assumption, we have

lim supw(27")y/n = co. (14)

n—oo

We select an increasing sequence of positive integers as follows. Let n; be the least positive integer satisfying
the inequality w(27™),/n; > 2. As it is easy to see w(27™),/n; < 22. By induction, assume that the
numbers n; < ng < ... < ng_1 are chosen. Applying (14), we take for nj the least positive integer such
that

w(27") /g — ngp_q > 2", (15)

Then, obviously,

w(27") /g — ng_q < 28T (16)
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Thus, we obtain a sequence 0 = ng < n; < ... satisfying inequalities (15) and (16) for all k¥ € N. Let us
consider the block basis {v;}32, of the Rademacher system defined as follows:

v = E a;r;, where a;= for nr_1 <i<ng.
_ Y (g — o) w(27mE)
i=ng_1+1

Let us recall that, by Theorem 1, if R =Y. | by g, then ||R||as

p,w

~ ||R||i, + || R, where

(oo} m

IR, = (Zb ) and  ||R||w = sup (w(2_m)z |bk|>.
k=1 meN k=1

Now, we estimate the norm of vx, k =1,2,..., in M. At first, by (15),
L 1/2 1

2) 7T = <27% k=1,2,... 17

<- Z+1a1> /777% T w(Q—"k) = ’ ) Sy ( )

1=Nk—1

Moreover, taking into account (15), (16) and the choice of ng, for every k € N and ng_1 < i < ng we have

, —iN(; k41—
w(2—) Z 0 — w(27) (i — ng—1) < 2Pt i — 4 <o
(ng —ng—1)w(2=") — 2k /ng — ng_1

j=ng—1+1
As a result, from preceding estimates and Theorem 1 (see also inequality (10) from its proof) it follows that

Nk

L=w@™™) Y a<|olw,, <C (18)
i=ngk_1+1

for some constant C' > 0 and every k € N. Thus, {vx}?2, is a semi-normalized block basis of {ry}?2, in
My oy
Further, let us select a subsequence {m;} C {nx} such that

w27 < Sw(27), i=1,2,... (19)

le

and denote by {u;}52; the corresponding subsequence of {vj}72 ;. Then, u; can be represented as follows:
U; = Zakm, where l; =nj_1+1, my=n;, j1 <j2<....
k=l

We show that the sequence {u;}5°, is equivalent in M, ,, to the unit vector basis of cg.
Let f =2, B u;, 3; € R. Then, we have

f= Zﬁzzakm—Z%W,
i=1

where v, = G ak,l; <k <m;,i=1,2,...and v, = 0if k ¢ U2, [l;,m;]. To estimate || f||.,, assume, at first,
that mg < q < ls41 for some s € N. Then,

S

> el = Zw Z ax = sz e <10l Y oy
k=1

=1
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and from (19) together with the fact that w increases it follows that

S

0@ Y bl < 16l 3 o < 130y 327 =203
k=1

i=1 =0

Otherwise, we have I3 < ¢ < mg,s € N. Then, similarly,

q s—1 q
1
Z | < (Z m + Z ak) I1(Bi)ll o
k=1 =1 k=l
s—1
1 g—Is+1
= (Z Py e 1>w<2ms)) 168 eo
Since ms = n;, and Iy = nj _; + 1 for some j; € N, in view of (15), (19) and the choice of n;, , we obtain
q s—1 _ _
- w2 M) w2 (g - +1)
274 < ;

i = F T
< 2 j i) llco < 4 i)llco-
= <Z T =t ) 1000l < 41150

Combining this with the previous estimate, we obtain that || f{]., < 4](8i)l|c,- Moreover, by (17),
oo my
IF17, < D88 ai < 1B,
=1 k=l

Therefore, again by Theorem 1,

£ lag < C (1l + 1f 1) <5CNB) llco-

In opposite direction, taking into account the fact that {u;} is an unconditional sequence in M, ,,, by
(18), we obtain

1 llasp = esup 1Bil [uillar,, = 118 leo,
1€

for some constant ¢ > 0. Thus, we have proved that E := [uy) M, = Co- Since R, is separable, Sobczyk’s

theorem (see, for example, [1, Corollary 2.5.9]) implies that E is a complemented subspace in Ry, . O

Proof of Theorem 2. At first, let us assume that relation (12) holds. Then, by Corollary 2, Rp., =~ lo.

1
Therefore, since Mp, ., — Ly, by the Khintchine inequality, the orthogonal projection P generated by the
Rademacher system satisfies the following;:

1P fllaty = IPFllL, <NPle,»r, 1 fllz, <IPlz,~z, 1 f ]I, .,

because P is bounded in L,,1 < p < oo. Hence, P : M, ,, — M, ,, is bounded.

Conversely, we argue in a similar way as in the proof of Theorem 4 in [5]. Suppose that the subspace
Rpw = [rn]%; is complemented in M, ,, and let Py : M, ,, — M, ,, be a bounded linear projection whose
range is R . By Proposition 2, there is a subspace E' complemented in R, ,, and such that I ~ cy. Let
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P, : Ry — E be a bounded linear projection. Then P := P, o P; is a linear projection bounded in M, ,,
whose image coincides with E. Thus, M, ,, contains a complemented subspace E ~ cy.

Since M, ., is a conjugate space (more precisely, M, ., = (H%")*, where H?" is the “block space” and
1/p +1/q = 1—see, for example, [29, Proposition 5]; see also [9] and [21]), this contradicts the well-known
result due to Bessaga—Pelczyniski saying that arbitrary conjugate space cannot contain a complemented
subspace isomorphic to ¢y (see [8, Corollary 4] and [7, Theorem 4 with its proof]). This contradiction proves
the theorem. O

4. Rademacher subspace R ,, is not complemented in Morrey space M .,

Theorem 3. For every quasi-concave weight w the subspace R ., is not complemented in the Morrey space
Ml,w'

In the proof we consider two cases separately, depending if the condition (12) is satisfied or not.

Proof of Theorem 3: the case when (12) does not hold. On the contrary, we suppose that R4 ,, is comple-
mented in M ,,. Then, if @) is a bounded linear projection from M; ,, onto Ri ., by Theorem 1, for every
p € (1,00) and f € M, ,,, we have

1Qf 1My R NQF 0110 S NQUN 2t S NRQUN N0, -
Thus, @ is a bounded projection from M, ., onto R ., which contradicts Theorem 2. O

To prove the assertion in the case when (12) holds, we will need auxiliary results.
Let Mz‘f’w be the dyadic version of the space M), 1 < p < oo, consisting of all measurable functions
f:10,1] — R such that

1/p

1
1fllase . = sup w(|1]) */UWMt < 0.
P 1eD | )

Lemma 1. For every 1 <p < oo M, = M;{w and

1 larg < sty < 40 Nass - (20)

Proof. The left-hand side inequality in (20) is obvious. To prove the right-hand side one, we observe that
for any interval I C [0,1] we can find adjacent dyadic intervals I and I» of the same length such that
I C [ UI and £|I;| < |I] < 2|I;|. Then, by the quasi-concavity of w,

1/

I iy
WUHMWWﬁ —UWW“/th
( |Il‘> p—1 p— 1 p p
< g /V|WJV|ﬁ
1/p

1 1
SYWMW)ﬂﬂNWMEMWWﬁ
Il 12
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1/p

1
<4 supw(|I]) | = / |f(t)[P dt =4 fllasa -
IeD 1] ) P

Taking the supremum over all intervals I C [0, 1], we obtain the right-hand side inequality in (20). O

Let P be the orthogonal projection generated by the Rademacher sequence, i.e.,

o 1
= Z f)ri(s)ds - ri(t).
[

k=1

Proposition 3. Let 1 < p < oco. If Ry s a complemented subspace in My, then the projection P is
bounded in My .

Proof. By Lemma 1, it is sufficient to prove the same assertion for the dyadic space Mz‘iw. We almost repeat
the arguments from the proof of the similar result for r.i. function spaces (see [26] or [4, Theorem 3.4]).

Let t = Z ;27" and u = Z Bi27% (a4, B; = 0,1) be binary expansions of the numbers t,u € [0, 1].

Define the followmg operation:
t@u—ZQ (a; + B;) mod 2].

One can easily verify that this operation transforms the segment [0, 1] into a compact Abelian group. For
every u € [0, 1], the transformation w,(s) = s @ u preserves the Lebesgue measure on [0, 1], i.e., for any
measurable E C [0, 1], its inverse image w;, *(F) is measurable and |w, ! (E)| = |E|. Moreover, w,, maps any
dyadic interval onto some dyadic interval. Hence, the operators T, f = fow, (0 <u < 1) act isometrically
in M;fyw. From the definition of the Rademacher functions it follows that the subspace R, ., is invariant
with respect to these operators. Therefore, by the Rudin theorem (see [27, Theorem 5.18, pp. 134-135]),
there exists a bounded linear projection @ acting from Mg w onto R, ., and commuting with all operators
T (0 <u < 1). We show that Q = P.
First of all, the projection @ has the representation

QI = Y Qi) rile), (21)

=1

where by Theorem 1, @; (¢ = 1,2,...) are linear bounded functionals on Mﬁ,w It is obvious that

1 ifi=g,
Qi(rj)_{o it % j. (22)

Consider the sets
U = {u €0,1]:u=)Y 0277, o= 0}7 Ui = [0,1\U;.
j=1

One can check that

B ri(t) ifueU,
it ®u) = { —r;(t) ifueUf.
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Due to the relation T,Q = QT,, (0 < < 1) this implies

QulTuf) = { ~Qi(f) ifueUe

Taking into account that |U;| = |Uf| = 1/2, we find that

[@@pdu=30:) and [ @uTupdu= 36,
U; Ug

1145

Thanks to the boundedness of @Q;, this functional can be moved outside the integral; therefore, we obtain

Q) = Qi [ s du~ [Tt du).

U; Ue
Since

U, ifte U;,

].: :t if =
{s€0,1]: s ®u, ueU} {Uic ifte v,

g iftel,

0,1]: s=t Uit =
{86[?] § @u7ue Z} {Uz iftGU,LC,

and the transformation w, preserves Lebesgue measure on [0, 1], we have

/ T, f(t)du = / F(s)ds - xun (t) + / £(s)ds - xu (1)
U; U; Us

and

Us U;

i

[ = [)ds o + [ 16)ds
Ue

It is easy to see that r;(t) = xv, (t) — xve(t). Therefore, from the last two relations it follows that

[ s du [ Tupe)dn- / F()rils) ds - ri(h).
0

Ui Ue

This and (21)—(23) yield

i.e., Q@ = P, and Proposition 3 is proved. O

The following result, in fact, is known. However, we provide its proof for completeness.

(23)
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Lemma 2. Suppose that the Rademacher sequence is equivalent in a Banach function lattice X on [0,1] to
the unit vector basis in lo, i.e., for some constant C > 0 and all a = (ak) °, €l

| < Cllall: (24)

o0
C lall, < || Y- axr
k=1

Moreover, let {rp} C X', where X' is the Kothe dual space for X. Then, the orthogonal projection P is
bounded in X if and only if there exists a constant C1 > 0 such that for every a = (ar)7>, € l

o
> ar|, < Cilalin: (25)
k=1

Proof. First, suppose that (25) holds. For arbitrary f € X, we set

1
/f s)ds, k=1,2,...
0

By (25), for every n € N, we have

n 1 n n
S ald? = [ 163 eulhins)ds < Il | S entom|
k=1 0 k=1 k=1
<culflx (S enn?)”
k=1

and therefore, taking into account (24), we obtain

> /
1P7lx < o(Xer?) < C-illflx.

k=1

Thus, P is bounded in X.
Conversely, if P is a bounded projection in X, then from (24) it follows that

/f(t)zn:akrk dt = Zak cx(f) < lall, (ch )
0

k=1

< Cllalli, [[IPfllx < CPllx-x llall, [ fllx

for each n € N, all a = (ax)72, €[> and f € X. Hence,
oo
| > acn, < ClIPIx-x lal.
k=1

and (25) is proved. O

Proof of Theorem 3: the case when (12) holds. In view of Lemmas 1, 2 and Proposition 2 it is sufficient to
prove that
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lim sup — Tn HZ H(Md ’ = o0. (26)

n—oQ

For every m € N such that /m/2 € N we consider the set

2m
Ep={t€[0,1]:0<> m(t) < /m/2}.
k=1
Clearly, Epm = Upes,, 8" where Sp, C {1,2,...,2*"}. Also, it is easy to see that |En,| — 0 as m — oo,
Denotmg
f ! X m €N
m = 7 o~ XEm>» ’
w(|Em|)
we show that
[fmllarg, <1 forall meN. (27)

In fact, let I be a dyadic interval from [0, 1]. Clearly, we can assume that I N E,, # &. Then, by using the
quasi-concavity of w, we have

wl1) w(I) [INEwl) _w(l) |10 Eyl
Nin /'f"‘ Nt = T B = 1 w(TAEw]) =

and (27) is proved.
From (27) it follows that

DI / 32 n0] ottt = s [ Yoniola

TR ‘ng

€Sy k=1

where ¢} = sign7y|azm, k = 1,2,...,2m, i € Sp,. Denoting o, := > ;g |Zi21 gt ], by the definition
of E,,, we obtain

Om =2- > C2m(m—k)=2- 202’” (28)
m—y/m/2<k<m
where CI" _#'l),,nzl,Z,...,i:O,l,.. n. Let us estimate the ratio C2™, /C2™ for 1 < k < \/m
from below. At first,
oy (m!)?  (m—k+1-...-(m—1)m
c2Zm _(mfk)!(erk)!_(m+1)-~...~(m+k71)~(m+k)
~om (m—k+4+1)-...-(m—1) m H -4
S m+k (m+1l)-..-(m+k—-1) m+k i 11+7]n
k—1

m 1-4L
1 ).
m+k exp(Zogl+J
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Next, we will need the following elementary inequality

1-t¢ 1
log § t+2t+2t320 forall 0<t<z. (29)
Indeed, we set
1-1¢
t) =1 2t + 217
p(t) :=log 7 + 2t +
Then, ¢(0) = 0. Moreover, for all ¢t € [0,1/2] we have
2 2t2(2 — 3t?)
t)=——"5+24+6°=""—"2>0.
A =g T2+ 1—¢ =
Thus, ¢(¢) increases on the interval [0,1/2], and (29) is proved.
From the above formula, inequality (29) and the condition 1 < k < y/m/2 we obtain
cxm, m 2t 2o A4
G Z e (- i e )
j=1 Jj=1
_m (—k(k: - 1)) ox (—(k - 1)2k2)
mtk o m P 2m3
1 k2 1
b (-5 1)
2 mom
Combining this estimate with equation (28), we infer
vm C2mk L2
=2 Z Mok kOO N e k. (30)

2

The function 1 (u) = e~ - u increases on the interval [0, /m/2] because of

vm/ e Vmj2 k , 1 1
e m k> Z /e_tn udu—E(l—%)ng
k=1 k=1 .7,

Moreover, an easy calculation, by using the Stirling formula, shows that

lim C’Qm4_m\/ =1.

m—o0
Thus, from the above and (30) it follows that

2m

2m 1 o .
H;”me > rEn 2 2 [ =

i€Sy, k=1
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1 , vm/2 2
27272m.c727m.671m. 67’;7'](1
(T R 2
Z#ZLfm.Oyan.efl/m.lmN Vvm

w(|Eml) "~ 3vrw(|Enl)

for all m € N such that \/m/2 € N. Since |E,,| — 0, then by (12) w(|Ey,|) — 0 as m — oo. Hence, the
preceding inequality implies (26) and the proof is complete. O

5. Structure of Rademacher subspaces in Morrey spaces

Applying Theorem 1 allows us also to study the geometric structure of Rademacher subspaces in Morrey
spaces Mp .

Theorem 4. Let 1 < p < oo and lim;_,o+ w(t) = 0. Then every infinite-dimensional subspace of Ry 18
either isomorphic to ly or contains a subspace, which is isomorphic to cy and is complemented in Rp .

The following two propositions are main tools in the proof of the above theorem.

Proposition 4. Suppose that 1 < p < oo and lim;_,o+ w(t) = 0. Then the Rademacher functions form a
shrinking basis in Ry .

Proof. To prove the shrinking property of {r,}52; we need to show that for every ¢ € (M, ,)* we have

1) 1r0) (M) — 0as m — oc. (31)

oo
n=m

Assume that (31) does not hold. Then there exist ¢ € (0,1),¢p € (Mp.)* with [l¢[/(ag,,)- = 1, and a
sequence of functions

oo
fn = E ay'"ry, where m; <mg <...,
k=m,

such that || f,.|

p,w

=1,n=12,...and
o(fn)>e forall n=1,2,.... (32)

Let us construct two sequences of positive integers {g;}5°; and {p;}2,,1 < ¢1 < p1 < g2 < p2 < ... as
follows. Setting g1 = my, we can find p; > ¢, so that || fo:pl“ ap'rilla,., < /2. Now, if the numbers
1< ¢ <p1 <qa<p2 <...qi—1 < pi_1, 1 > 2, are chosen, we take for g; the smallest of numbers m,,,
which is larger than p;_; such that

w(27%) < —w(27%1). (33)

N | =

Moreover, let p; > ¢; be such that

| i afnil,, <e2 (34)

n=pi+1 pw

We set af :=a}' if ¢; <k <p;, and o} :=0if p; <k < gi+1, 1 =1,2,.... Then, the sequence
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qit+1—1

Z a};rk, 1=1,2,...

k=q;

is a block basis of the Rademacher sequence. Moreover, by the definition of wu;,

swp sl <2, (33)

pyw —
1= 1Sy

and from the choice of the functional ¢ and (34) it follows that

:<P<§:akirk> =<p(fi)—so( i azirk) > o(f;) _H Z o r’“H > % (36)

k=q: k=p;+1 k=p;+1 Mp.w

Let {v,}52; be an arbitrary sequence of positive numbers such that

v: < oo and Vn = 00. (37)
Z >

n=1

We show that the series > " | v, u, converges in M, ,,. To this end, we set by := af, - v; if ¢; < k < gi41.
For every m € N, by Theorem 1,

l

- H Z b’“”H (Z bQ) + sup w27 D byl (38)

P, >
k=qm p k=qm =qm k=qm

00
H E Tn Un
n=m

Let us estimate both summands from the right-hand side of (38). At first, from (35) and Theorem 1 it
follows that

qi+1—1 %)
Z bQ—Z% do(ap)P<a Y A (39)
k=qm k=q; i=m
Similarly, if ¢, < ... < @mar <1 < Gmirs1 for some r=1,2,..., then
l m+r—1 qiv1—1 1
Yolbel= D0 bl Yo ekl el Do et
k=qm i=m k=q; k=qm4r
"~ b om |
< C ( K3 m--Tr ).
=2 Z;n w(2-4i+1) + w20

Combining this inequality together with (33), we obtain

» l m+r—1 w(2_q’"+ )
) > bl < Cy ( > \%\W + h’m+r|>
k=qm i=m
m—+r—1
<G ( Z il g o 4 "Ym+r|)
i=m

r—1
, Lj—r .
<G %%IVZI(ZO2 +1)<3(12 rgy)me
J:
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Clearly, the latter estimate holds also in the simpler case when ¢, <1 < @mnm+1. Thus, for every m € N,
!

sup w( Z lbr| <3Cs max [v: - (40)

1>qm k=g

From (37)—(40) it follows that the series > | v, u, converges in M, ,,. At the same time, since ¢ € (M, .,)*,
by (36) and (37), we have

¢<27nun> = ZVn‘p(un) > %Z'Yn =00,
n=1 n=1 n=1

and so (31) is proved. O

Corollary 3. Under assumptions of Proposition 4:

(i) m% — 0 weakly in M, .,
(ii) The Rademacher functions form a basis in the dual space (Rpw)*.

Proof. Since {r,}5°; is the biorthogonal system to {r,} itself, (ii) follows from Proposition 4 and Propo-
sition 1.b.1 in [16]. O

Proposition 5. Let 1 < p < oo and lim;_,o+ w(t) = 0. Suppose that

mn+1—l
Uy = Z apTE, l=mp <mo<...
k=m,
is a block basis such that ||uy||y, ,, =1 for alln € N and Zm"“_l ai — 0 as n — co. Moreover, let
—Mn41 1 —Mn
w(2 )§§w(2 ), n=1,2,.... (41)

Then the sequence {u, }5%, contains a subsequence equivalent in M, ., to the unit vector basis of cq.

Proof. Passing to a subsequence if it is needed, without loss of generality we may assume that

Mypr1—1

Y oap<2, n=12,.... (42)

k=m,

Suppose that f =" By un € Ry Setting by, = apf; if m; <k < mjy1,4=1,2,..., by Theorem 1, we
obtain

l

(ib )1/2+Supw(2 D bkl (43)

pw k=1 eN k=1

1Fllatye = || D bere
k=1

At first, by (42),

miy1—1 o)

DM =6 D i< (sw |52 < B
k=1 i=1 =

k=m; S i=1
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Moreover, precisely in the same way as in the proof of Proposition 4 from (41) and the equations
lwnllaz,.,, =1, n=1,2,... it follows that for some constant C’ > 0

l

sup w( Z|bk| < C (B leo-

1=1,2,...

Combining the last two inequalities together with (43), we conclude that || f{/as, ., < C [[(Bi)|l¢, for some
constant C' > 0.

Conversely, since {u,} is an unconditional sequence in M, ., and ||u,||ar, ,, = 1, n = 1,2,..., by Theo-
rem 1, || fllaz,.., > clBil- i =1,2,..., with some constant ¢ > 0. Hence, || f||rs, ., > ¢||(8:)llc,, and the proof
is complete. O

Proof of Theorem 4. Assume that X is an infinite-dimensional subspace of R, such that for every f =
> e biri € X we have

g~ (S8)"
k=1

with a constant independent of b, k = 1,2,.... Then, X is isomorphic to some subspace of I3 and so to I
itself.

Therefore, if X is not isomorphic to Iy, then there is a sequence {f,}52, C X, f = Y poy bnkTk, such
that || f,|lar,., =1 and

Zb k=0 as n— oo (44)

Observe that {f,}>2; does not contain any subsequence converging in M, ,-norm. In fact, if
| frw — fllng,,., — 0 for some {f,,} C {fn} and f € X, then from Theorem 1 and (44) it follows that

f =’ berk, where by, = 0 for all k = 1,2, .... Hence, f = 0. On the other hand, obviously, | f|lx, . = 1,
and we come to a contradiction.
Thus, passing if it is needed to a subsequence, we can assume that
| fn = fmllg, ., >€>0 forall n#m. (45)

Recall that, by Corollary 3, the sequence {ry}7°, is a basis of the space (Rp..)*. Applying the diagonal
process, we can find the sequence {n;}3°,,n1 < ny < ..., such that for every i = 1,2,... there exists
. 1

limg o0 fo 74(5) fy (5) ds. Then,

1
hm 75(8) (frionss (8) = fron(8))ds =0 forall i=1,2,....

k— o0
0

Hence, since the sequence {fn,, ., — fno, }oey is bounded in M, ,, we infer that fp,, ., — fn,, — 0 weakly
in Rpw (with respect to the norm of M, ,,). Now, taking into account (45) and applying the well-known
Bessaga—Pelczytiski Selection Principle (cf. [1, Proposition 1.3.10, p. 14]), we may construct a subsequence
of the sequence { fn,, ., — fnay Jizy (We keep for it the same notation) and a block basis

mk_*_l*l

uUp = Z ajri, L=m3 <mg <...,

Jj=my
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such that

”uk— (fn2k+1 _fTLZk)”M w SBO_I'z_k_lv k= 1L,2,..., (46)
where By is the basis constant of {ry} in Ry ., and

1

w2 < Sew@T™), k=12,

From (46) it follows that the sequences {ux}pe, and {fn,, ., — fnoy tioey are equivalent in M, ,, (cf. [16,
Proposition 1.a.9]). Moreover, by Theorem 1 and (44),

mk+171
Z a? —+0 as k — oo.

j=my

According to the latter relations we can apply Proposition 5, which implies that the sequence {ux}32; (and
S0 {frorsr — Jnow Joe1) contains a subsequence equivalent to the unit vector basis of cg. Since {frn,,,, —
Jran 132, C X, then X contains a subspace isomorphic to ¢y. Complementability of this subspace in Ry .
is an immediate consequence of Sobczyk’s theorem (see [1, Corollary 2.5.9]). O

Remark 2. If lim;_,o+ w(t) > 0, then M, ,, = L and {ry} is equivalent in M, ., to the unit vector basis of I
(cf. Theorem 1). Observe also that if sup,<; w(t) logé/ %(2/t) < oo, then we get another trivial situation:

Rpw = la (see Corollary 2).
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