JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:488 |
On the Kirchhoff type Choquard problem with Hardy-Littlewood-Sobolev critical exponent | |
Article | |
Rui, Jie1  | |
[1] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China | |
关键词: Kirchhoff type Choquard problem; Hardy-Littlewood-Sobolev critical exponent; Variational method; | |
DOI : 10.1016/j.jmaa.2020.124075 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we study the following Kirchhoff type Choquard problem: -(a + b integral R-N vertical bar del u vertical bar(2)dx)Delta u + u = (integral R-N beta F(u(y) + vertical bar u(y)vertical bar(2)(mu)*/vertical bar x - y vertical bar(mu)dy) x (beta f(u) + 2(mu)*vertical bar u vertical bar 2(mu)*-2(u)) in R-N, (0.1) where N >= 3, a, b > 0 are constants, beta > 0 is a parameter. When mu is an element of (0,4], under suitable conditions on b, beta and f, we prove that (0.1) has a ground state solution. When mu > 4, we also obtain some related existence results. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2020_124075.pdf | 476KB | download |