期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:488
On the Kirchhoff type Choquard problem with Hardy-Littlewood-Sobolev critical exponent
Article
Rui, Jie1 
[1] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
关键词: Kirchhoff type Choquard problem;    Hardy-Littlewood-Sobolev critical exponent;    Variational method;   
DOI  :  10.1016/j.jmaa.2020.124075
来源: Elsevier
PDF
【 摘 要 】

In this paper, we study the following Kirchhoff type Choquard problem: -(a + b integral R-N vertical bar del u vertical bar(2)dx)Delta u + u = (integral R-N beta F(u(y) + vertical bar u(y)vertical bar(2)(mu)*/vertical bar x - y vertical bar(mu)dy) x (beta f(u) + 2(mu)*vertical bar u vertical bar 2(mu)*-2(u)) in R-N, (0.1) where N >= 3, a, b > 0 are constants, beta > 0 is a parameter. When mu is an element of (0,4], under suitable conditions on b, beta and f, we prove that (0.1) has a ground state solution. When mu > 4, we also obtain some related existence results. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_124075.pdf 476KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次