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1. Introduction

In this paper, we study the following Kirchhoff type Choquard problem:

B 2 N BF (u(y)) + |u(y)[*
a+b/|Vu| dz | Au+u= / p— d
RN RN
X (ﬁf(u)+2:|u|2;_2u) in RV, (1.1)

where N > 3, p € (O,N), 2;, = 21]5__2“ is the upper critical exponent of the Hardy-Littlewood-Sobolev

inequality, F' is the primitive function of f.
The Choquard equation has several physical origins. For example, it can be used to describe the quantum
mechanics of a polaron at rest. Also, it is known as the stationary Hartree equation, or the Schrédinger-
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Newton equation. In recent years, much interest has grown on Choquard equations. In [14], Lieb first proved
the existence and uniqueness of ground state solutions to the following equation:

P
—Au+u= Mdy |u[P~?u in R3.
|z —y|#
3

In [15], Lions considered the existence of multiple solutions. In [16], the authors used variational methods
to obtain the existence of ground state solutions to a more general Choquard equation. For other related
results, we refer the readers to [1,6,8,18] for the subcritical case and [3,7,17] for the critical case. However, to
our best knowledge, there are few results about the Kirchhoff type Choquard equation. The Kirchhoff type
problem occurs in various branches of mathematical physics. It can be used to model suspension bridges.
Also, it appears in other fields like biological systems, such as population density. Because of the presence of
the nonlocal term, the Kirchhoff problem is not a pointwise identity, which causes additional mathematical
difficulties. There are many papers focusing on the Kirchhoff type problem. See [5,10-12,21,23] for the
subcritical case and [4,19,20,26-28] for the critical case. Recently, in [24], the authors studied a Dirichlet
problem of the Kirchhoff type Choquard equation.

In this paper, we consider the Kirchhoff type Choquard problem in the whole space. By using variational
methods, we obtain the existence of ground state solutions of (1.1) for the case u < 4. Also, we consider
related problems of (1.1) for the case pu > 4. To solve the problem, we assume the following conditions:

(f1) f € C(R,R) and lim,_,q J};L = limy o0 ‘fgﬂ_)gu -0
(f2) There ex1sts ¢ > 0 such that F(¢ fo s)ds > 0.
(f3) F(u)= [, f(s)ds >0 for u € R. Moreover, there exists & > 0 such that F(¢ fo s)ds > 0.
(f3) limy— 400 \IF% = 400 when N > 5 lim, i % = +oo when N = {4,
u Inu| ™8
limy, 4 o0 HI;((—;L)“) = 400 when N = 3, where F(u) = [' f

u

We first consider the case p € (0,4). In this case, we cannot derive the convergence of the PS sequence
easily. To solve the problem, we have to estimate the PS sequence carefully. Our results are as follows.

Theorem 1.1. Let p € (0,4) and a, b > 0. Then

(i) there exists a large By > 0 such that problem (1.1) has a ground state solution for 8 > By if (f1) and
(f2) hold;
(ii) for any B > 0, problem (1.1) has a ground state solution if (f1) and (f3) hold.

Remark 1.1. The condition (f3) or (f3) is used to estimate the energy level, which is crucial for the proof of
the relative compactness of the PS sequence. In [3], the authors assumed the condition F'(u fo ds >0
for u € R, which is essential when using the monotonicity trick originally due to [22]. In thls paper, we use
a direct method and remove the restrict condition.

We next consider the case y = 4. In this case, it is hard to prove the geometric structure of the functional
and the convergence of the PS sequence. Now we state our results. Define the best constant:

fRN |Vu|?dz

Sy = T
fRN f N _|u(y wiu‘:‘f)l dxdy) *

inf
DL.2(RN)\{0} (
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Theorem 1.2. Let p=4,a>0,b € ( ) 52> and 8 > 0. Assume that (f1) and (f3) hold. Then problem (1.1)
has a ground state solution.

Theorem 1.3. Let 1 =4, a > 0 and b > 2. Assume that (f1) and (f2) hold. Then there exists a large B > 0
such that problem (1.1) has a ground state solution for § > (.

When g > 4, we cannot prove the boundedness of the PS sequence. Instead, we turn to consider the
following problem:

|z — yl~

e
- a+b/|VU|2dm Autu =) /ﬁF(u(y))”“(y)‘ d
RN RN

X (ﬂf(u)+2;|u|2;*2u) in RV, (1.2)

where A € [3,1]. Let

ayp =

20)% 0 -4 [N—p+2] 1
Si’f: N -2 | b(N —2) ’

N LGl R S N B e
TS N-2 |a(N-2) '
“w

(1.3)

Theorem 1.4. Let p > 4. Assume that (f1) and (f3) hold. Then for a > ay (or b > by), there exists a large
B2 > 0 such that for B > B2, problem (1.2) has at least a nontrivial solution uy for almost every \ € [%, 1].
Moreover, there exists a sequence {\,} C [%,1] such that A\, T 1 as n 1T co and uy, satisfies one of the
following:

(i) uy, — oo in HY(RY) as n — oo;
(ii) wuy, 4s bounded in H(RY) and consequently, problem (1.1) has a nontrivial solution.

When g > 4 and RY is replaced by a bounded domain, problem (1.1) becomes the following problem:

- a+b/\Vu|2d:U Au+u

/BF DM 4, ) o (55u) + 25 fuP

|z —y[*

;_QU) in Q, v =0 on 09, (1.4)

where @ C R¥ is a bounded smooth domain with smooth boundary. In this case, we get the following
results.

Theorem 1.5. Let pn > 4. Then

(i) for a > a1 (or b > by), there exists a large B3 > 0 such that for 8 > B3, problem (1./) has at least two
nontrivial solutions if (f1) and (f}) hold;

(ii) for any B > 0, there exists a large ag > 0 (or a large by > 0) such that for a > ag (or b > ba), problem
(1.4) has no nontrivial solutions if (f1) holds.
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The outline of this paper is as follows: in Section 2, we give some important lemmas; in Section 3, we
prove Theorems 1.1; in Section 4, we prove Theorems 1.2-1.3; in Section 5, we prove Theorems 1.4-1.5
Notations:

e H'(RY) denotes the Hilbert space with the norm |ju|? = [pn(a|Vu* + |[u*)dz. DV2(RY)
{ue L? (RYN): Vu € L>(RM)} denotes the Sobolev space with the norm |[u||%, 2 := [~ |Vu[?da.
1
o Jlulls == (fgn ulfdz)®, 2 < s < oo
e (C denotes a universal positive constant (possibly different).

2. Preliminary lemmas

We first introduce the following Hardy-Littlewood-Sobolev inequality.

Lemma 2.1 ([15]). Let s, t > 1 and p € (0, N) with 2 + 1 + & =2. Let f € L*(RY) and h € L'(R™). Then
there exists a sharp constant C(N, s,t, 1) independent of f, h, such that

/ / T gy < OV, 5,8l L Il (2.1)

RN RN

In particular, if s =1t = 2N L then

&F(%fg
C(N787t7/‘1’) :C(N7/J’) =72 F(N_%

Let 2¥-# < ¢ < 2% By Lemma 2.1, for any u € H'(RY),
/ / u E ‘_lu dzdy < +oo.
RN RN

Also, for any u € DV2(RY),

u(y z)|%e %« 2
————————dady i |Vu\ dz.
M—M“

RN RN

T

Define the best constant:

Vul?d
S = D 2(]1Rn]§)\{0} Jon [Vu'dz T (2.2)
' u “’ u(x g
( fRN f N lu)l = ‘yu i dxdy)
" 2
Lemma 2.2 ([7]). Let S = inf,c p1.2r¥)\ {0} M Then S,, = ————5 is achieved if and only
(Jan lu|?"dz)2* [C(N,u)] 2Nk

if

M@=C(§:€THQN2, (2.3)

where a € RY, b€ R, C > 0 is a constant.
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_ IN(v- 2)]

(L+lz2) 72
is a minimizer for S,. Let ¢ > 0 and ro > 0. Define u.(z) = ¢¥(z)Us(z), where U.(z) = e U(s),
1 € C§°(Bay, (0)) such that ¢(x) =1 on B,,(0) and 0 < ¢ (x) <1 on RV,

By [25], we know S is attained by the function U(x) = . Then by Lemma 2.2, we get U(z)

Lemma 2.3 (/25]). For e > 0 small,

/ VuPdz = S¥ +0(eN2), / |2 de = S% + 0(M),
N

RN
O(e?), N > 5,
lu-l*dz = { O(e2|Ine|), N =4, (2.4)
RN O(e), N =3.

Similar to Lemma 2.4 in [24], we can use Lemmas 2.1-2.2 to obtain the following result. We omit the
proof here.

Lemma 2.4.

/ / |u5<y|>;f; uslﬁxn?? dady > [C(N, )]
RN RN !

N 2N —p N—pu
2

S, 7 —0( 7). (2.5)

Lemma 2.5. Let § > 0. Assume that (f1) and (f3) hold. Then for any L > 0, there exists e, > 0 such that
fore e (0,eL),

*

/ / ﬁQF(ue(y))F(us(x)) + 2/8F(Ua(y))‘ua(x)|2“ dzdy

s |z — y[~
QoL 25 N > 5,

> ¢ GLS el 5", N =4, (2.6)
%565“ N =3,

2 )

where Cy > 0 is a constant independent of L, €.

Proof. By (f3), for any L > 0, there exists Ry > 0 such that for u > Ry, F(u) > L|u|2N_Nﬂi when N > 5;
F(u) > Llu|"3" |Inu|"s" when N = 4; F(u) > L|u] *5*> When N = 3. Choose ¢, € (0,1) small such that

2

N=z
’ln(@)’ > 1|lnel| for € € (0,). Let £, = min {50,1 0, 3 <%> and £ € (0,e1). Then

N-—2 2) 2N M
u(z) > % > Ry, for |x| < e. Moreover, for |z| < e, F(us) > [N(J(V )2()1]\, 2)(2N —L when N > 5;
13 2e
F( 85 L = _ 4 35 L _ . :
Ue) > == ( | In 5|) when N =4; F(u.) > 205 when N = 3. By a direct calculation,
2e) 4 g) 3

/ / ﬁZF(Ue(y))F(uE(x)) + 2/8F(Ue(y))‘ua($)|22 dady

|z — yl~

RN RN

-/ B2F(ue () F(ue(w)) + BF(ue)lue@l* ;o
|z — yl

B.(0) B.(0)



6 J. Rui / J. Math. Anal. Appl. 488 (2020) 124075

B F (us (y)) F (ue (2)) + 2BF (us (y)) ue (2) >

+
|z —y|~

Barg (0)\B:(0) Bzry (0)

dzdy

B2F (ue(y)) F(ue () + 28F (ue (y)) |ue (2) %

|z — y[*

+ dxdy. (2.7)

B (0) B2y (0)\Be(0)

By (f3), there ex1sts Ry > 1 such that F(u) > 0 for u > RO By (f1), there exists My > 0 such that
|F(u )|<M0|u| * for 0 < u < Ry. Then F(u) > M0|u| “ for u > 0. Moreover, for u, v > 0,

F(u)F(v) > min{—Mov| "~ F(u), —Mp|u| "~ F(v)}. (2.8)

By Lemmas 2.1, 2.3,

/ 2B (wey) e (@)%
|z —yl*
B27‘0 (O)\BE (O) B2ro (0)

/ 26 F (ue(y))|uc () 2

|z — gy~

+ dzdy

B:(0) Bzry (0)\B:(0)
—28Mo|uc ()| % Jue ()%
|z — y|»

> dxdy

Barg (0)\B=(0) Bary (0)

/ / —2BMo|ue(y )|  Jue () P dzdy
|z —y|»

B.(0) B2y (0)\B (0

> —4BMoC(N, ) [Jue| 5| _ax e [Pl 2
—ClePE", N > 5,

> ¢’ |Ine| 5", N =4, (2.9)
—C'e%", N =

Also, by (2.8) and Lemmas 2.1, 2.3,

BQF(ue(y))F(ue(x))dxdy
[z —yl
Barg (0)\B:(0) Barg (0)
N B2F (ue(y)) F (ue(2)) dzdy
|z —yl»

B:(0) Bar, (0)\B:(0)

2N —
> 28 MyC(N, ) e 5 | g | F(ue)]| g

2N —p

—C"e™ N > 5,
> 07" g5, N =4, (2.10)
—C”eﬁ%, N = 3.

Besides, there exist C’, C” and Cjy > 0 such that
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/ / ﬂQF Ue ( E(CL‘)) + Q/BF(ue(y))lus(m>|2Z dzdy

|z —y|»
-(0) Bo(
C'F . 2%
- [ D@l
|x\“ + lyl»
B.(0) B.(0)
(2—N)(2N—p) |, p—2N
lold b5+
Le 221; : fB (0) fB (o) dady, N =5,
> CrLet T e ne) " dedy, N =4
- 2e fB (0) fB (0) 44y, =%
oL ;JrL
e fB (0) fB (0) dzdy, N =3,
COLEQNN ) N > 5,
={ CyLe " \ln5|7 N =4,
C()L€ 5 s N = 3.

Combining (2.7) and (2.9)-(2.11), we get the result. O

Let H(u) = SF(u) 4 |u|* and h(u) = 81;]_1(;1). Define the functional on H}!(RY) by

2
I(u) = %||u\|2+g /|Vu|2dx - % / / dedy.

RN RN RN
Then I : H}(RV) + R is of class C! and critical points of I are solutions of (1.1).

Lemma 2.6. Assume that (f1) hold. If u is a critical point of I, then

a(N —2) /|vu|2dx+N/\u|2dx+b(N 2) /|Vu|2dx
H(u
(2N — ) // | ))d dy.
RN RN *

Moreover,

I(u) —M/|Vu|2dx+ /|u\2dx

2

b(4 — p) 2
+4(2N—,u) /|Vu\ dz
RN

(2.11)

(2.12)

(2.13)

(2.14)

Proof. By a standard argument, we can derive the Pohozdev type identity (2.13). We omit the proof here.

By (2.13), we get (2.14). O

Similar to Lemma 2.6 in [24], we can get the following results.
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Lemma 2.7. Assume that (f1) holds. If u, — u weakly in H}(RN), let v, = u,, — u, then

[ [ e Ry - //H A R ey

RN RN

2%
Un (y Un "
//‘ |x—|y|“ o) dzdy + o, (1),

RN RN

and

o v ()2 v, (2) [ o
_2#// L o).

2

N_2 N b(N — 2
J(u):%/|Vu|2dx+3/|u\2dx+% /\Vu|2dm
RN RN

RN

2N —p H(u(y))H (u(z))
- / / P dxdy. (2.15)

RN RN

When P # 0, let p = inf,ep I(u).
Lemma 2.8. Let p € (0,4] and B8 > 0. Assume that (f1) holds. If P # (), then p > 0.

Proof. By Lemmas 2.1, 2.6 and (fi), there exists C > 0 such that

N72)/|Vu|2da:+N/|u\2dx
RN RN

< 2N = p)CN, w)[|H ()22

2N —pu 2N—p

<C /|u|2dx +C /\urfdx . (2.16)

By (2.16) and the definition of S, we get there exists M > 0 such that

el < (Jluf) =55

= ’”) . (2.17)
Then there exists m > 0 such that ||u|| > m. Since u € P is arbitrary, by (2.14), we get p > 0. O

Lemma 2.9. Let pu € (0,4] and 8 > 0. Assume that (f1) holds. If p is attained by u € P with P # (), then
I'(u) =0.
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Proof. We first prove J'(u) # 0. Otherwise,

(N -2) a+2b/\Vu\2dx Au+ Nu= (2N — p) /Z(f(;")u)dy h(w).

RN

Then we have the Pohozaev type identity:

N -2)
(7/|Vu| dx+—/|u| dz +b(N —2)? /|Vu| dz

2N 1) //H |m_y|u u(@)) 40 dy. (2.18)

RN RN

Since u € P, by (2.18),

N —2)? N2
%/|Vu|2dx+7/|u|2dx+b(]\7—2)2 /|Vu|2dx

RN N RN
N —2)(2N — N(2N
= ol )2( M/\V\dx—&—g/hqu
RN

2
+ b - 2)2(2N — / |Vul|?dz |

RN

a contradiction with u # 0.
Now we prove I'(u) = 0. By the Lagrange multiplier rule, there exists A € R such that I’ (u) —A\J'(u) =
Then

- a+b/|VU|2dx Au+u — /Mdy h(u)
T —yH
RN RN

= -\N-2) a+2b/|Vu|2d:r Au+ ANu

RN

— A2N — ) / H(u(y))dy h(u).

|z —y|»

RN

Moreover, we have the Pohozaev type identity:

N -2 N N -2
% / |Vul*dz + ) / lu|?dx + % / |Vu|*dz
RN RN RN

N [ [ HEGHG)
=y gl W

RN RN
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—9)2 N?
=D [wupan+ 20 [jupar oo -22 | [ vaPas
RN RN

—u)? U u(x
)\(2N2 ) //H( |(i/)zHy|(H( ) dedy. (2.19)

RN RN

Since u € P, by (2.19),

a)\(N—2)(2N—u+2) /Wzdﬁw / RGeS

RN RN
2

+ —b(N722)(47M) / |Vul?dz | =0.

RN

By € (0,4] and uw # 0, we get A=0. So I'(u) =0. O

3. The case p € (0,4)

When p < 4, we have 22 > 4. We first prove Theorem 1.1 (). Let

N-—2
oWV —pH2) [ o N\ g
"TeN ) \2.0(V,p)
2(N —2)

b(4— p) < a ) N=pF2 2eN-p)
+ SN-ptz . 3.1
N — ) \ZO, (3:1)

Lemma 3.1. Assume that (f1)-(f2) hold. Then there exists a large 8" > 0 such that P # 0 for 3 > p".

Proof. For R > 0, define wg(z) = & for |z| < R, wgr(z) = 0 for |z| > R+ 1, wg(z)
R <|z| < R+ 1. Then wg € H}(RY). We note that

[ [ PlonFunte) g, [ [ FOI o),

|z —y[»
RN RN Br(0) Br(0)

_ / / F(wr(y))F(wr(z))

|z —y|~

=¢R+1— |z|) for

dzdy
Br+1(0) Br+1(0)\Br(0)

Br+1(0)\Br(0) Br(0)

By (f2), we have F(wg) > 0 for |z| < R. Then

Br(0) Br(0)

CF(wr(y))F(wr(z))
= / / (2l + o))"

dzdy
Br(0) Br(0)
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2

¢ CF?(§)|Br(0)?
> F(e)d — 2 \S)IPRVIT
> G | | Few Ry
Br(0)
By Lemma 2.1,
F F
(wr(y)) (wR(I))dxdy
|z —y|»
Br+1(0) Br+1(0)\Br(0)
2N —p
2N
<c@ | [ 1PwalFray
Br+1(0)
2N—u
2N
- / |F(wr)| %% dy

Br+1(0)\Br(0)

< OV, ) mmax |F(5)[*| B (0)] 5% | Bra(0) = Br(0) 5"
Similarly,
F(wR(y))F(wR(az))d$dy
|z —y|»

Br+1(0)\Br(0) Br(0)

2N —p 2N—p

SC(N,M)8%3§]|F(S)|2|BR( )72 |Bry1(0) — Br(0)] 2~

From (3.2)-(3.5), we can choose Ry > 0 large such that for R > Ry,

// wR|x_W @) 42y > 0.

RN RN

Let R > Ry. Then

/ H(wr(y (m))dxdy
Iw - yl“

— 32 F(wr(y wg() d dy + 28 F(wgr(y))|wr(z )| "
Iw—yl“ |z — y|n
RN RN RN R¥
27
//|wR i lwg (2] dzdy.
s lz —y|~

By (3.6)-(3.7), there exist 8’ > 0 and k > 0 such that for 8 > 3/,

/ Awrly (x))dmdy > rf2
va—yl“ -

By a direct calculation,

dzdy

11

(3.3)
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7 (wn (5)) =427 / Vunfar + Y0 [ e

RN
2
b(N — 2)t2N -4
+ % /|va|2d:L'
€Tr — L

RN RN

By (3.8)-(3.9), we know there exists a large 3" > 0 such that J(wg) < 0 for 3 > 3”. Let 8 > ”. By
(3.7), we get J (wg (3)) > 0 for ¢ > 0 small. Then there exists to € (0,1) such that J (wR (%)> = 0. So
P#0. O

Lemma 3.2. Assume that (f1)-(f2) hold. Then there exists By > " such that p < ¢y for 8> Bo.

Proof. By Lemma 3.1, we get wg ( ) € P for 8 > (”. By the definition of p, we have p < I (wR ( )) <
Sup;>o 1 (wg (3)). We note that

atN_2 tN
1w (3)) = el
wWR t) 5 /|VwR\ dz + 5 lwr|“dx
RN RN
2
thN—4
+ 4 /|VwR|2dx
752N o H
/ / (wrW)H(Wr@)) ;g (3.10)
Iz - yl“
RN RN
Let
2
a o, 1 a2, b 2
My = max 3 |[Vwg|“dz, 3 |wg|*dz, 1 |Vwg|*dz . (3.11)
RN RN RN

Then by (3.8) and (3.10)-(3.11), we get there exists Ly > 0 such that

K/ﬁQtQNf;L

p<supl (wR (f)) <Mo(tN=2 4N 4 2Ny
A ¢ 2
Lo Lg Lo

2(N—2) + 2N + 4(N 2) °

<
BN—uFz BN-r B =

So there exists B9 > B such that p < ¢o for 8 > B9. O

Lemma 3.3. Let § > 5y. Assume that (f1) holds. If {u,} C P is a bounded sequence such that I(u,) — p €
(0,co), then {u,} converges strongly in H:X(R™) up to a subsequence.

Proof. We assume u,, — u weakly in H!(R™). We prove J(u) > 0. Otherwise, J(u) < 0. We note that

7(u(2)) :(N‘—“M/W Pdz+ X /|u| dz

RN
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2
b(N — 2)t2N -4
2 (g,

2
RN
2N — i oy H(u(y))H (u(x))
_ T Py2N-p —#da:dy.
2 RZR[ |z —yl

Then J (u (E)) > 0 for ¢ > 0 small. Moreover, there exists ¢, € (0,1) such that J (u <%)> = 0. So by

I(uy,) — p and J(uy,) =0,

p=lim (1(%) _ M%J(un))

—%nh_)m /|Vun| do + /(= ( nli)n;o/|un| dz
2
e [ 1w
> QNQN”” /|v e+ ot /|u\2dx
2
e [ 1w

. 1 . .
Hul2)) = S =r(u(=)) >
+1(o(5)) m-,/(“(to)) (+(5))=»
a contradiction. Let v, = uy, — u. By J(u) > 0, J(u,) = 0 and Lemma 2.7,

0 >J(up) — J(u)

N —-2) N —-2)
2(7/\an| dx+—/|vn| daj—l—b(T /|an| dz

2N n 2 n 2:
”//'” UI“ D dzdy + on(1). (3.12)
o

RN RN

Then by Lemma 2.1,

a lim /\an|2dx

n—oo

<a lim /|an|2dx—|—b lim /|an|2dx
n—oo n—oo
RN N

2N—p 2N—p

N N-—-2
. 2*C(N,
< 27 C(N, ) nler;O/|vn\2 dx < % T}Ln;o/wvnﬁdm : (3.13)

RN RN
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N—-2

Assume that lim,, e fg [V, |2de = I holds. Tf I > 0, by (3.13), we obtain that I > (72*0& #))NT” x
2N — P )
S~=k+2. Then by I(u,) — p and J(u,) =0,

p=Jim_ (1) = gr—(w))

N 2)
> lim H+ /\V nl? dx—!— /|Vu |*dw > co,

n—oo

a contradiction. So [ = 0. Moreover, lim,, o [px |vn|? dz = 0. By Lemma 2.1,

2,
lim //v” | oa(@)] dedy = 0. (3.14)
T

n— 00 y'ﬂ
RN RN

From (3.12) and (3.14), we get u,, — v in H}(RY). O

Proof of Theorem 1.1 (i). Let 8 > (9. By Lemmas 2.8 and 3.1-3.2, we get p € (0, cp). By the definition of
p, there exists {u,} C P such that I(u,) — p. Since {u,} C P, by Lemma 2.6, we get ||u,|| is bounded.
Then by Lemma 3.3, there exists u € H}(RY) such that u,, — u in H}(RY). So p = I(u) with v € P. By
Lemma 2.9, we get I'(u) =0. O

Now we prove Theorem 1.1 (7). Let

2N —p

Su” paN-p, (3.15)

N
2

0S5 oo B8V anoy  [C(N )

ht) = =5 A 2

Obviously, we have sup,~q h(t) > 0.
Lemma 3.4. Let 3 > 0. Assume that (f1) and (f3) hold. Then P # 0 and p < sup;>q h(t).

Proof. We first prove P # (). By a direct calculation,

7 (e (3)) =20 [ v+ M [ ppaa
RN RN
2

N —2 2N—4
+% /|Vu5|2d33

2N 2 T Hpan- “//Hu€|m_y|u (x))d:cdy. (3.16)

RN RN

N 2% 2%
By Lemmas 2.3-2.4, there exists e € (0,1) such that [[uc||> < 2252 and [py [pw dedy >

N 2Nk .
M for ¢ € (0,1). By (f1), for any & > 0, there exists Cs > 0 such that |F(u)| < §lu|? +
Cg|u| * for u € R. Then by Lemmas 2.1 and 2.3,
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|z =yl
RN RN
< PO W) g+ 280N, )P ()l g e g
2N —p 2N —p
N N
< CCE /\u5|2da: + C§? /|u5|2*da:
RN RN
2N—p 2N —p 2N —p
2N 2N 2N
+C |Cs / |ue|?da +4 / luc|? dz
RN RN
< CC2N" 4 CCse ™" + C6% + CO. (3.17)

Thus, there exist o > 0 and e2 € (0,£1) such that for § € (0,d¢) and ¢ € (0,e2),

H (ue(y)) H(uc()) CO, ¥ S, T
/ / |$ = y|“ dzdy > 4 . (3.18)

RN RN

Since ||uc||? < ﬁ, by (3.16) and (3.18), there exists ¢’ > 1 large such that J (u. (7)) < 0. Let € € (0,&2).
By (3.16), there exists t” € (0,1) small such that J (u (57)) > 0. So there exists ¢/ € (¢',") such that
J (uc (57)) = 0. Then P # 0.

By the definition of p, we get p < I (uE (F)) <sup;so (uE (;)) Also,

. athZ 9 tN 9 bt2N74 9
I(ua (z)) = /|Vu8| da;—|—— / |ue|*dx + 1 /\Vug\ dz
RN

t2N ! / / HUEIx—yIH @) 4zdy. (3.19)

RN RN

N
Since [|uc||? < 2252 by (3.18)-(3.19), there exist a small ¢; € (0,1) and a large ¢, > 1 independent of &
such that

sup )I (us (—)) < %sup h(t). (3.20)

t€]0,t1]U[tz,+00 3 >0

Let

atN 2 thN 4
y(t) = /|Vu5| dr+ = /|u€\ dr + 7 /|Vu€|2dx

tQN n 27
//'“5 Elue @ g,
|z —yl»

RN RN

By Lemmas 2.3-2.4, there exists €3 € (0,e2) such that for € € (0,¢e3),
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Ce?, N > 5,
max y(t) < suph(t) + Ce¥N 2+ Ce" 2" +{ Ce?|lne|, N =4, (3.21)
tefty,tz] t>0
Ce, N = 3.

By (3.21) and Lemma 2.5, we derive that sup,cy, 4,1 1 (us (3)) < supysq h(t) for & > 0 small. Together with
(3.20), we get p < sup;q h(t). O

Lemma 3.5. Let 8 > 0. Assume that (f1) holds. If {u,} C P is a bounded sequence such that I(u,) — p €
(0,5up,50 (1)), then {un} converges strongly in H}(RYN) up to a subsequence.

Proof. We assume u,, — u weakly in H!(RY). Similar to the argument of Lemma 3.3, we can prove
J(u) > 0. Recall that J(u,) = 0. Let v,, = u, — u. Then by Lemma 2.7,

0 >J(uy) — J(u)

N-2 N b(N — 2
2¥/|V0n‘2dx+5/|vn|2dx+¥ /IWanx
RN N RN

2N - )Pl () |2
’“‘//'” | )P o (@ @)™ edy + on(1). (3.22)
X

—ylm
RN RN vl

By (3.22) and Lemma 2.1,

a(N —2) lim /|an|2dx+b(N—2) lim /|vun\2dx

’I’L‘)OC

RN
2N—p
N-—-2
2N — u)C(N
< BN =OWN ) /|an|2dx . (3.23)
S N 2 n—oo

RN

Assume that lim, . [pn [Vun|?*dz =1 holds. If [ > 0, then by (3.23),

N = WO, ) 5y
SN

a(N —2)l +b(N — 2)1

IN

(3.24)

L
By (3.24) and Lemma 2.2, we have b’ [ “x— ) < 0. By the structure of h, we know h(t) attains its

N =
§2(N-2)
maximum at a unique T € (0,+o0) and h'(T) = 0. Moreover, h'(t) > 0 for t € (0,T) and h'(¢t) < 0 for
1

€ (T, +00). Then 52— > T. By I(u,) — p and J(u,) =0,
SQ(N 2)

p— lim (I(un) - 2N1_NJ(un)>

n—00
= lim N M+2 /|V nl2dz + (< )) /|Vun|2dx

2

RN

a(N—p+2) noagy b —p) ronv agn
> T 2 — 2T
pTpT R To7 v K



J. Rui / J. Math. Anal. Appl. 488 (2020) 124075 17

L (W(T),T) = W(T) = sup h(t),

=h(T) —
@) 2N —p t>0

a contradiction. So | = 0 and lim, e fRN |vn|2*dx = 0. Together with (3.22) and Lemma 2.1, we get

limy oo fgn Jrw Wdzdy =0and u, —uin H}RY). O

[z—y|~

Proof of Theorem 1.1 (i7). By Lemmas 2.8 and 3.4, we get p € (O, SUpP; > h(t)) By the definition of p, there
exists {un} C P such that I(u,) — p. Since {u,} C P, by Lemma 2.6, we know |u,| is bounded. By
Lemma 3.5, we have u,, — u in H}(R™). Then p = I(u) with u € P. By Lemma 2.9, we get I'(u) = 0. O

4. The case p = 4

When p = 4, we have 2], = 2. We first consider the case b < 52—2

S2

Lemma 4.1. Let 8 > 0. Assume that (f1) and (fs) hold. Then P # 0 and p < m

N
Proof. We first prove P # ). By b < 2 and Lemmas 2.2-2.4, there exists e1 € (0, 1) such that [u.|?> < 2232
for € € (0,e1). Moreover, for € € (0,27),

2

2 bS2)SN
//'“E )] CEL GOl /|Vu5| dr| > G0 (4.1)

|z —yl* 252
RN RN

By (3.17), for any ¢ > 0, there exists Cs > 0 such that

/ / BPF (uc(y)) F(uc(x)) + ZBF(ua(y))Ius(x)IQdmdy
|z —y[*
RN RN

< CC3e

2(N—2)
N

+CCse™~" 4+ C82 + C6. (4.2)

By (4.1)-(4.2), we derive that there exist dg > 0 and €5 € (0,£;) such that for 6 € (0,d0) and € € (0,£2),

2

2 —bS2)SN
//HUE 1 (x))dxdy—b /\VUE\de > % (4.3)
[z =y A

452
RN RN

N
Recall that [|u.||? < 3232 Then by (3.16) and (4.3), there exists ¢’ > 1 large such that J (u. (#)) < 0. Let
€ (0,e2). By (3.16), there exists t” € (0,1) small such that J (u. (7)) > 0. So there exists ¢ € (t',t")
such that J (ue (57)) = 0. Then P # 0.
2q2

Now we prove p < 4(;77“222). Since u, (W) € P, by the definition of p, we have p < I (uE (t,—,,)) <

N
sup;>o 1 (ue (3))- Since [Juc|? < 3052 by (3.19) and (4.3), there exist a small t; € (0,1) and a large 5 > 1
such that

. 252
tE[O,tl?B[I;,J,_OO) d (UE (f)) < 41(2(1*—125‘3) (4.4)

Let
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tN_2 tN
:a 5 /|VU€|2dx+7/|u5‘2d$
RN RN
2N—4 |ue (y | |ue (2 | b 2
—t —// o — g — " dady — 1 |[Vuc|*dz
N

RN

2

By Lemmas 2.2-2.4, there exists €3 € (0,e2) such that for € € (0,¢e3),

a® ( Jgn |Vus|2da:)2
max y(t) < Jtte () 2] (]Ifn)l2 ?
tE[t1, ta] 4 [2 Jr~ Jrw E%_*idxdy —b( Jan [Vue[*dz) }

< R - N-2 2
+ / luc|2dx < sz) + Ce + Ce*. (4.5)

Since N > 5, by (4.5) and Lemma 2.5, we derive that for € > 0 small,

. a2S2 CoLt2N74 2N-—4 a?S?
sup I <— P 4202 - LT o<« —— 2
tE[t1,ts] ( ( )) 4(2 - bSE) 4 4(2 - 052)

2q2

Together with (4.4), we get p < 4(;77%2). O
H

Lemma 4.2. Let 8 > 0. Assume that (f1) holds. If {u,} C P is a bounded sequence such that I(u,) — p €

2 o2
(O, 4(;_7%‘%)) , then {u,} converges strongly in H}(R™) up to a subsequence.

Proof. We assume u,, — u weakly in H!(R"). Similar to the argument of Lemma 3.3, we have J(u) > 0.
Recall that J(u,) = 0. Let v, = u,, — u. By Lemma 2.7, we have

0 >J(un) — J(u)

N -2 N b(N —2
EM / |V, [2de + — / v, |2 da + N =2) / |V, |2dz
2 2 2
N N RN

//|v"| Y [on(@)[* dady + 0,(1). (4.6)

z —yl*
RN RN
By (4.6) and Lemma 2.1,
2 4
2% 2%
hm /|vn|2 dz +5S? lim | lim /|vn|2*dx
n—oo n—00
4
or
< 2C(N,p) | lim / lop|* dz | . (4.7)
n—oo

RN

2
2'de = I holds. Tf I > 0, then lim, ,o [ [Von[?dz > I+ > ;%% By

I(uy) — p and J(uy,) =0,
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p= lim (I(un) — ﬁﬂun))

a N-—4
li - v 2 = 2
s /' unl"dz + 4(N —2) / fun|da

RN
252
2
_ >
= nlgléo/ [Von|dz 2 42— bS2) bS?)

a contradiction. So [ = 0. By (4.6), we get u, — u in H}(RY). O

2 g2
Proof of Theorem 1.2. By Lemmas 2.8 and 4.1, we know p € (0, 4(;_721‘;.2)). By the definition of p, there
m

exists {un} C P such that I(u,) — p. Since {u,} C P, by Lemma 2.6, we know |lu,| is bounded. By
Lemma 4.2, we have u,, — u in H}(R™). Then p = I(u) with u € P. By Lemma 2.9, we get I'(u) =0. O

Now we consider the case b > 2. By the definition of 5,
2 2
/ \Vul?dz | — / / [uly | ) |“4 dady > (b - —) / Vul?da | . (4.8)
RN Y
Lemma 4.3. Assume that (f1) and (f2) hold. Then there exists a large 51 > 0 such that P # (0 for 8 > B;.
Proof. For R > 0, define wr(z) = £ for |x| < R, wr(z) = 0 for |z] > R+ 1, wr(x) = &(R+ 1 — |x|) for
R <|z| < R+ 1. Then wg € H}(RY). By (3.8)-(3.9), there exists a large 3; > 0 such that J(wg) < 0 for

B > 1. Also, J (u (Z)) > 0 for ¢t > 0 small. Then there exists to € (0,1) such that J (wR (R)) =0. So
P#£(. O

Lemma 4.4. Let 8 > (1. If {u,} C P is a bounded sequence such that I(u,) — p, then {u,} converges
strongly in HX(RN) up to a subsequence.

Proof. We assume u,, — u weakly in H}(R™). Similar to the argument of Lemma 3.3, we get J(u) > 0.
Let v,, = u,, — u. Then

0>J(un) — J(u)

N —2) b(N —2)
_(7 / |V, [2de + = / |vn|2dz+(T /|an| dx
RN RN

2

v 2U X 2
—(N—Z)//dedy—l-on(l). (4.9)
RNRN

Since b > &5, by (4.8)-(4.9), we get u,, — u in H}(RY). O

Proof of Theorem 1.3. Let 5 > ;. By Lemmas 2.8 and 4.3, we know p > 0. By the definition of p, there
exists {un,} C P such that I(u,) — p. Since {u,} C P, by Lemma 2.6, we know ||u,| is bounded. By
Lemma 4.4, we have u,, — u in H}(R™). Then p = I(u) with u € P. By Lemma 2.9, we get I'(u) = 0. O
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5. The case p > 4

When p > 4, we have 22, < 4. For A € [1,1], define I (u) = A(u) — AB(u), u € H}(R"). Here

2

1 b
Aw) = gl + 5 | [ 19uPdz)
RN

1 H (u(y))H (u(z))
=3 / / P dzdy. (5.1)

RN RN

Then Iy : HY(RY) — R is of class C' and critical points of I are solutions of (1.2). In order to prove
Theorem 1.4, we need the following result.

Theorem 5.1 (/9]). Let (X,|.|x) be a Banach space and let J C Rt be an interval. Consider a family
(Jx)aes of Ct-functionals on X of the form

Ia(u) = A(u) — AB(u), VY A€ J,

where B(u) > 0 for any v € X and either A(u) — 400 or B(u) — 400 as ||ul|x — co. Assume there exist
two points v1, vo in X such that

= inf J J. J Ve
ox = inf max Jy(v()) > max{Jy(vr), Jx(v2)} €J,
where T' = {v € C([0,1], X) : v(0) = v1,v(1) = va}. Then for almost every A € J, there is a sequence
{vn} C X such that {v,} is bounded, J\(v,) — cx and J(v,) — 0 in X 1. Moreover, the map X\ — c is
continuous from the left.

Lemma 5.1. Let A € [1,1]. Assume that (f1) holds. If {u,} C H}RY) is a sequence such that |luy| s
bounded, Ix(u,) — ¢ and I} (u,) — 0, then there exists a1 > 0 (or by > 0) such that {u,} converges strongly
in HX(RYN) up to a subsequence for a > ay (orb > by).

Proof. Let A € [3,1]. Since ||u,|| is bounded, we assume u,, — uy weakly in H}(RY). Let A(u) = 1|ul|® +
b [en [Vul?dz, where A = lim,_,o Jen [Vug|?dz. For A € [3,1], define I(u) = A(u) — AB(u), where
u € HY(RY). Then I} (u,) — 0. By Lemma 2.7,

on(1) = (I)\(un) n (IA(U)\) u,\)

||vn||2+bA/|an\ dz — m/ / [on(y | - “’[ﬂ D dedy + on(1). (5.2)
r—=y
RN RN
By (5.2) and Lemma 2.1,
2
lim |jv,|? +b | lim /|an|2dx
n—oo n—oo
RN
2N—p 2N—pu
25 C(N, 1) o
<2,C(N hm /|vn\2 dz < A | lim /|an|2d:v . (5.3)
S—‘M n—o00
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By (5.3) and the Young’s inequality,

lim [jv,[*> +b [ lim /|an|2dx
n—oQ n—oo
RN

<a; lim /|an|2dx+b lim /|an|2dx ) (5.4)
n— o0 n—0o0

RN RN

or

lim [|v,|? +b [ lim /|an|2dx
n—oo n—oo
RN

<a lim /|an\2dx+b1 li_)m /|an|2dx ) (5.5)
n—00 n oo
RN RN

where ay, by are given in (1.3). Then u,, — u in H}(RY) for a > a; (or b > b;). O

Lemma 5.2. Let a > a1 (or b > by). Assume that (f1) and (f5) hold. Then there exist a large B2 > 0 and
00 > 0 such that for > B2 and almost every A € [%, 1], there exists a sequence {u,} C H}(RY) such that
llun|| is bounded, Ix(un) — cx > go and I} (uy,) — 0. Moreover, the map A — cy is continuous from the left.

Proof. By (5.1) and (f3), we have B(u) > 0 and A(u) — 400 as ||u|| = oo. For R > 0, define wg(z) = ¢
for |z| < R, wg(z) =0 for |z| > R+ 1, wr(z) = &(R+ 1 —|z|) for R < || < R+ 1. Then wr € H}(RY).
By (f2), we get

H(wr(y)H(wr(z))

T dzdy
RN RN
g Flunm)Pwn(@) 0~ (5.6)
Z \:c _ y|u

Br(0) Br(0)

Then there exists a large B2 > 0 such that I (wg) < I% (wgr) < 0 for 8 > By. Let § > (3. By Lemma 2.1,
we get |B(u)| < 3C(N, p)||H(u)||? 2y . Then by (f1), there exists C’' > 0 such that
3N —1

2N]\]—L 2N]V—£L
B(u)| <C /|u|2dx e /|u|2*dx
RN RN
< (Il ™5 + ) 57). (5.7)

2(2N —p) 2(2N—p)

By (5.7), we have I)(u) > 3|[ul? — C” (HuHT +[ful| = ) Then there exist po € (0, |lwgl|) and
00 > 0 independent of A such that I\(u) > go for ||ul| = po. Also, I5x(0) = 0. By Theorem 5.1, for almost
every A € [1,1], there exists a sequence {u, } C H}(RY) such that ||u,|| is bounded, Ix(u,) — cx > 0o and
I’ (uy,) — 0. Moreover, the map A — ¢, is continuous from the left. O
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Proof of Theorem 1.4. Let a > ay (or b > by) and 8 > f2. By Lemmas 5.1-5.2, for almost every \ € [ 1],
there exists a sequence {u,} C H}(RY) such that u, — uy in H}RY), I\(u,) — cx > 0o > 0 and
I{(up) — 0. Then Ix(uy) = cx > go and I§(ux) = 0 for almost every A\ € [%,1], that is, problem (1.2)
has at least a nontrivial solution w) for almost every A € [%, 1]. By Lemma 5.2, there exist A, 1 1 and
{ux,} € H}RN)\ {0} such that Iy, (ux,) = ¢, = ¢1 > 0o and I} (uy,) = 0. When
we have I(uy,) — ¢1 > 0o and I’(uy,) — 0. By Lemma 5.1, there exists u € H}(R”Y) such that uy, — u
in H}(RY). Then I(u) = ¢; > 0 and I’(u) = 0, that is, problem (1.1) has at least a nontrivial solution. 0O

Now we prove Theorem 1.5. Define the functional on H}(2) by

2
1 H(u(y))H (u(x))
Q Q
where [lu g1 = ( [qalVul® + \u|2dx)% is the norm on H}(2). Then J : H}(Q) — R is of class C* and
3 2
critical points of J are solutions of (1.4). Let A1 = inf,c g1 () {0} %. Then
JQ
2 2 1 2
a [ [Vul*de < lullg < (a+ N |Vu|“dz. (5.9)
Q Q

Proof of Theorem 1.5 (7). Let a > ay (or b > b1). Without loss of generality, we may assume 0 € . Choose
r > 0 such that Ba,.(0) C Q. Define a function w, € Hg(Q) such that w,(z) = ¢ for |z| < r and w,(z) =0
for |x| > 2r. By (f3), we get

//eru—yw ity [ [ Sy >0

B,.(0) B,(0)

Then there exists a large 83 > 0 such that J(w,) < 0 for § > (3.
Let 8 > 3. We prove J(u) — 400 as [|ul gz — oo. In fact, by (f1) and Lemma 2.1, there exists C1 > 0

such that
[ [ R0,
- |z — y|#

2N —p 2N —p
N N
<y /|u|2dx +C4 /\u|2*dx
! Q
2N —pu 2N —pu
C N C N—2
< le /|Vu|2dx + le /|Vu|2dx . (5.10)
ALY SN J
By (5.9)-(5.10),
1 b C 202N —p)
J(w) >3 llullty + ———gllullyy — —— = el gy ™
4 (a + %) 20"~ A Y
C 2(2N—p)
! ull g (5.11)

- 2N-—p _2N_— —p
2 SN

2aN
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Then J(u) — +o0 as [[ul| gz — oc.

Since J(w;) < 0 and J(u) — +oo as [[ul gz — oo, by the Ekeland variational principle, there exist a
constant dy < 0 and a bounded sequence {u,,} C H}(Q) such that J(u,) — d and J'(u,) — 0. Similar to
the argument of Lemma 5.1, we obtain that there exists u; € H}(Q) such that u, — uy in H}(Q). Then
J(u1) < 0 and J'(ur) = 0. By (5.9)-(5.10), there exists C2 > 0 such that

1 9 2(2N —pu) 2(2N — u)
) 2 3l = Ca (Jullgy ™+ Tl ).

Then there exist oo € (0, lw, || z2) and 79 > 0 such that J(u) > g for [ull zz = o0. Also, J(0) = 0. By the
mountain pass lemma in [2], there exists {u,} C H}(Q) such that J(u,) — ¢ > no and J'(u,) — 0. Since
J(u) = +00 as ||lul| gz — 0o, we know ||uy|| g is bounded. Similar to the argument of Lemma 5.1, we derive
that there exists ug € H}(Q) such that u,, — ug in H}(Q). Then J(uz) > 0 and J'(uz) = 0. O

Proof of Theorem 1.5 (i). Assume that (J'(u),u) = 0 holds. By Lemma 2.1,

2

||u|@1§ +b /|Vu|2dx

2 * "
< FPCN I, e, )Hf(U) PSS ] T G
B2 IF@)] e P
2,
+ O, u)\lf(u)ul\L%(mlll W, g (5.12)
By (f1), we get max{|F(u)|, |f(uw)ul} < C’|u|2N * 4 Clul* for u € R. Then by (5.12), there exists C3 > 0
such that
2
Hu||i16 +b /|Vu|2dx
2N—p 2N—p
N N
/|u|2dx + /|u|2*dm
Q Q
2N —p 2N —p
O N O N-—-2
< QNBL“ /|Vu|2da; _'_T?:“ /|Vu|2dx . (5.13)
)\1 N SN=—=2 2

Since 1 < maX{QNAf“, 21@]:2“} < 2, by (5.13) and the Young’s inequality, we obtain that there exists a

constant as > 0 such that

2 2

||u||?{é +b /\Vu|2dx <b /|Vu\2dx +a2/|Vu|2d:c, (5.14)

or there exists a constant by > 0 such that
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2

2
||u||§{3 +b /|Vu|2dx < g/|Vu|2dx—l—b2 /|Vu|2dx . (5.15)
Q Q Q

Let a > ap (or b > ba). By (5.14)-(5.15), we get [[ullgg =0. O
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