JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:365 |
Characterization of the variable exponent Bessel potential spaces via the Poisson semigroup | |
Article | |
Rafeiro, Humberto1  Samko, Stefan1  | |
[1] Univ Algarve, Fac Ciencias & Tecnol, P-8000117 Faro, Portugal | |
关键词: Riesz fractional derivative; Riesz potential operator; Bessel potential space; Hypersingular integral; Grunwald-Letnikov approach; | |
DOI : 10.1016/j.jmaa.2009.11.008 | |
来源: Elsevier | |
【 摘 要 】
Under the standard assumptions on the variable exponent p(x) (log- and decay conditions), we give a characterization of the variable exponent Bessel potential space B-alpha[Lp(-)(R-n)] in terms of the rate of convergence of the Poisson semigroup P-t. We show that the existence of the Riesz fractional derivative D-alpha f in the space Lp(-)(R-n) is equivalent to the existence of the limit 1/epsilon(alpha)(I - P-epsilon)(alpha) f. In the pre-limiting case sup(x) p(x) < n/alpha we show that the Bessel potential space is characterized by the condition parallel to(I - P-epsilon)(alpha) f parallel to p((.)) <= C epsilon(alpha). (C) 2009 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2009_11_008.pdf | 269KB | download |