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Under the standard assumptions on the variable exponent p(x) (log- and decay conditions),
we give a characterization of the variable exponent Bessel potential space Bα[Lp(·)(Rn)] in
terms of the rate of convergence of the Poisson semigroup Pt . We show that the existence
of the Riesz fractional derivative D

α f in the space Lp(·)(Rn) is equivalent to the existence
of the limit 1

εα (I − Pε)
α f . In the pre-limiting case supx p(x) < n

α we show that the Bessel
potential space is characterized by the condition ‖(I − Pε)

α f ‖p(·) � Cεα .
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The Bessel potential space Bα[L p(·)(Rn)], α > 0, defined as the range of the Bessel potential operator over the variable
exponent Lebesgue spaces L p(·)(Rn), was recently studied in [2], under assumptions on p(x) typical for variable exponent
analysis, where in particular it was shown that the space Bα[L p(·)(Rn)] may be characterized as the Sobolev space

Lα,p(·)(Rn) = {
f ∈ Lp(·): Dα f ∈ Lp(·)}, (1)

with the Riesz fractional derivative Dα f realized as a hypersingular integral, the justification of the coincidence
Bα[L p(·)(Rn)] = Lα,p(·)(Rn) being given in [2] in the “under-limiting” case supx∈Rn p(x) < n

α . In [2], in the case of integer α,
it was also verified that Bα[L p(·)(Rn)] coincides with the standard Sobolev space, defined in terms of partial derivatives,
the same having been also checked in [11].

In the case of constant p it was also known that the Bessel potential space Bα[L p(·)(Rn)] may be characterized in terms
of the rate of convergence of identity approximations. For instance, with the usage of the Poisson semigroup Pt , t > 0, the
space Bα[L p(Rn)] is described as the subspace of L p(Rn) of functions f for which there exists the limit limt→0

1
tα (I − Pt)

α f ,
besides this

lim
t→0
(L p)

1

tα
(I − Pt)

α f = Dα f (2)

see for instance Theorem B in [23], where the simultaneous existence of the left- and right-hand sides in (2) and their
coincidence was proved under the assumption that f and Dα f may belong to Lr(Rn) and L p(Rn) with different p and r.
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In the case p = r this was proved in [20] where the case of the Weierstrass semigroup was also considered. Relations of
type (2) go back to Westphal’s formula [28]

(−A)α f = lim
h→0

1

hα
(I − Th)

α f

for fractional powers of the generator of a semigroup Th in a Banach space. The latter in its turn has the origin in the
Grünwald–Letnikov approach [10,17] to fractional derivatives of functions of one variable, under which the fractional deriva-

tive is defined as limh→0+
�α

h f
hα , where �α

h f is the difference of fractional order α > 0.
What is now called variable exponent analysis (VEA) was intensively developed during the last two decades, variable

exponent Lebesgue spaces L p(·)(Rn) being the core of VEA. The progress in VEA was inspired both by difficult open problems
in this theory, and possible applications shown in [21]. Not going here into historical details, we refer to original papers
[27,15] and surveying papers [7,12,14,25]. As is known, extension of various facts valid for constant p to the case of variable
p(x) encountered enormous difficulties and required essential efforts from various groups of researchers. Among the reasons
we could remind that variable exponent spaces are not invariant with respect to translations and dilations, Young theorem
for convolution operators is no more valid, the Minkowsky integral inequality proves to be a very rough inequality, etc.

Although expected, the validity of (2) in the variable exponent setting was not easy to justify, in particular because the
apparatus of the Wiener algebra of Fourier transforms of integrable function, based on the Young theorem, is not applicable.
Another natural approach, based on Fourier multipliers, extended in [4] to the variable exponent setting, may be already
applicable, which is used in this paper. However, because of the specific behaviour of the Bessel functions appearing under
the usage of the Mikhlin–Hörmander Theorem, this approach also encountered essential difficulties, see Sections 4 and 5.1.

The paper is arranged as follows. In Section 2 we provide some necessary preliminaries. Section 3 contains formulations
of the main results of the paper, see Theorems 14, 16, 17 and Corollary 15. In Section 4 we prove some important technical
lemmas and in Section 5 we give the proofs of the main results. In particular in Section 5.1 we show that some specific
functions are Fourier p(x)-multipliers, which required the most efforts. The result on these Fourier multipliers is then used
in Sections 5.2–5.4 to obtain the characterization of Bessel potential type spaces in terms of the rate of convergence of the
Poisson semigroup.

2. Preliminaries

We refer to papers [27,15,22] and surveys [7,12,25] for details on variable Lebesgue spaces, but give some necessary
definitions. For a measurable function p : Rn → [1,∞) we put

p+ := ess sup
x∈Rn

p(x) and p− := ess inf
x∈Rn

p(x).

The variable exponent Lebesgue space L p(·)(Rn) is the set of functions for which

�p( f ) :=
∫
Rn

∣∣ f (x)
∣∣p(x)

dx < ∞.

In the sequel, we suppose that p(x) satisfies one of the following standard conditions:

1 � p− � p(x) � p+ < ∞, (3)

or

1 < p− � p(x) � p+ < ∞. (4)

Equipped with the norm

‖ f ‖p(·) := inf

{
λ > 0: �p

(
f

λ

)
� 1

}
,

this is a Banach space. By p′(x) we denote the conjugate exponent: 1
p(x) + 1

p′(x) ≡ 1. We make use of the well-known
log-condition∣∣p(x) − p(y)

∣∣ � C

− ln(|x − y|) , |x − y| � 1

2
, x, y ∈ Rn, (5)

and assume that there exists p(∞) = limx→∞ p(x) and there holds the decay condition∣∣p(x) − p(∞)
∣∣ � A

ln(2 + |x|) , x ∈ Rn. (6)
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Definition 1. By P (Rn) we denote the set of all bounded measurable functions p : Rn → [1,∞) which satisfy assump-
tions (4)–(6).

Definition 2. By M(Rn) we denote the set of exponents p(·) : Rn → (1,∞) such that the Hardy–Littlewood maximal opera-
tor is bounded in the space L p(·)(Rn). As is known [5], P (Rn) ⊂ M(Rn).

2.1. Identity approximations

Let φ ∈ L1(Rn) and
∫

Rn φ(x)dx = 1. For each t > 0, we put φt := t−nφ(xt−1). Following [3], we say that {φt} is a potential-
type approximate identity, if it has integrable radial majorant

sup
|y|�|x|

∣∣φ(y)
∣∣ ∈ L1(Rn).

Convergence of potential-type approximate identities in the setting of variable exponent Lebesgue spaces L p(·) was known
from [6] under the assumption that the maximal operator is bounded. (An extension to some weighted spaces was given
in [19].) The following Proposition 3 proved in [3, Theorem 2.3], does not use the information about the maximal operator
and allows to include the cases where p(x) may be equal to 1.

Proposition 3. Let a function p : Rn → [1,∞) satisfy conditions (3), (5) and (6). If {φt} is a potential-type approximate identity then:

(i) ‖φt ∗ f ‖p(·) � C‖ f ‖p(·) , for all t > 0, with C > 0 not depending on t and f , and
(ii) limt→0 ‖φt ∗ f − f ‖p(·) = 0, f ∈ L p(·)(Rn).

2.2. Fourier p(x)-multipliers

Let m ∈ L∞(Rn). We define the operator Tm by

T̂m f (ξ) = m(ξ) f̂ (ξ) (7)

where f̂ (ξ) = F f (ξ) is the Fourier transform given by

F f (ξ) =
∫
Rn

eix·y f (x)dx.

When Tm generates a bounded operator on L p(·)(Rn), we say that m is a Fourier p(·)-multiplier. The following Mikhlin-
type multiplier theorem for variable Lebesgue spaces is known, see [13, Theorem 4.5] where it was proved in a weighted
setting; note that a similar theorem in the form of Hörmander criterion (for variable exponents proved in [4, Section 2.5])
requires to check the behaviour of less number of derivatives (up to order [ n

2 ]+1), but leads to stronger restrictions on p(x).

Theorem 4. Let a function m(x) be continuous everywhere in Rn, except for probably the origin, have the mixed distributional deriva-

tive ∂nm
∂x1∂x2···∂xn

and the derivatives Dαm = ∂ |α|m
∂x

α1
1 ∂x

α2
2 ···∂xαm

m
, α = (α1, . . . ,αn) of orders |α| = α1 +· · ·+αn � n −1 continuous beyond

the origin and

|x||α|∣∣Dαm(x)
∣∣ � C, |α| � n, (8)

where the constant C > 0 does not depend on x. If p satisfies condition (4) and p ∈ M(Rn), then m is a Fourier p(·)-multiplier
in L p(·)(Rn).

It is easily seen that Mikhlin condition (8) for radial functions M(r) = m(|x|) is reduced to∣∣∣∣rk dk

drk
M(r)

∣∣∣∣ � C < ∞, k = 0,1, . . . ,n. (9)

Note that (9) is equivalent to∣∣∣∣(r
d

dr

)k

M(r)

∣∣∣∣ � C < ∞, k = 0,1, . . . ,n, (10)

since (r d )k = ∑k
j=1 Ck, jr j d j

j with constant Ck, j , where Ck,1 = Ck,k = 1.
dr dr
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Lemma 5. Let a function m satisfy Mikhlin’s condition (8). Then the function mε(x) := m(εx) satisfies (8) uniformly in ε, with the
same constant C .

The proof is obvious since Dαm(ε·)(ξ) = ε|α|(Dαm)(εξ).
We need the following lemma on the identity approximations. Note that in Lemma 6 no information on the kernel is

required: the only requirement is that its Fourier transform satisfies the Mikhlin multiplier condition.

Lemma 6. Suppose that m(x) satisfies Mikhlin’s condition (8). If

lim
ε→0

m(εx) = 1

for almost all x ∈ Rn and p ∈ P (Rn), then

lim
ε→0

‖Tε f − f ‖p(·) = 0, (11)

for all f ∈ L p(·)(Rn), where Tε is the operator generated by the multiplier m(εx).

Proof. The statement of the lemma is well known in the case of constant p ∈ (1,∞), see [23, Lemma 12], being valid in
this case for an arbitrary Fourier p-multiplier m. By Lemma 5 and Theorem 4, the family of operators {Tε} is uniformly
bounded in L p(·)(Rn). Therefore, it suffices to check (11) on a dense set in L p(·)(Rn), for instance for f ∈ L p−(Rn)∩ L p+ (Rn).
Since ‖ f ‖p(·) � ‖ f ‖p− + ‖ f ‖p+ , for such functions f we have

‖Tε f − f ‖p(·) � ‖Tε f − f ‖p− + ‖Tε f − f ‖p+

from which the conclusion follows, in view of the validity of the theorem in case of constant p. �
Since we will also deal with Fourier p(·)-multipliers which do not satisfy Mikhlin condition (8), we will need the fol-

lowing lemma.

Lemma 7. Let a function m(x), x ∈ Rn be given as m(x) = M(x) + φ(x), where M(x) satisfies Mikhlin’s condition (8) and F −1φ(x) :=
Φ(x) has its radial non-increasing majorant Φ̃(x) := sup|y|�|x| |Φ(y)| integrable. Then m(x) is a Fourier p(·)-multiplier in L p(·)(Rn)

when p(·) ∈ M(Rn).

Proof. This follows from Theorem 4, Proposition 3 and the fact that

Tm f (x) = F −1[M(ξ) f̂ (ξ)
]
(x) + Φ ∗ f (x). �

2.3. On finite differences

By a finite difference of integer order � and step h ∈ R, in this paper we always mean a non-centered difference

��
h f (x) = (I − τh)

� f (x) =
�∑

j=0

(−1) j
(

�

j

)
f (x − jh) (12)

where I is the identity operator and τh f (x) = f (x − h) is the translation operator. We refer to [24, Chapter 3] and [26,
Sections 25–26] for more information on centered or non-centered finite differences and their role in fractional calculus and
the theory of hypersingular integrals.

The difference of fractional order α is defined as

�α
h f (x) = (I − τh)

α f (x) =
∞∑
j=0

(−1) j
(
α

j

)
f (x − jh), α > 0, (13)

where the series converges absolutely and uniformly for each α > 0 and for every bounded function f , which follows from
the fact that

∑∞
j=1 |(αj)| < ∞, see for instance [26, Section 20.1], for properties of fractional order differences.

In a similar way there is introduced a generalized difference of fractional order α, if one replaces the translation operator
τh by any semigroup of operators. In this paper we make use of the Poisson semigroup

Pt f (x) =
∫

n

P (x − y, t) f (y)dy (14)
R
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where

P (x, t) = cn t

(|x|2 + t2)
n+1

2

, cn = 


(
n + 1

2

)
/π

n+1
2 ,

so that

(I − Pt)
α f (x) =

∞∑
k=0

(−1)k
(
α

k

)
Pkt f (x). (15)

The Poisson kernel P (x, t) is a potential-type approximate identity in accordance with the definition of Section 2.1. Therefore,
by Proposition 3 the operators Pt f are uniformly bounded in the space L p(·)(Rn) under the assumptions of that Proposition
on p(·). Then

∥∥(I − Pt)
α f

∥∥
p(·) � C c(α)‖ f ‖p(·), c(α) =

∞∑
k=0

∣∣∣∣(α

k

)∣∣∣∣ < ∞, (16)

where C is the constant from the uniform estimate ‖Pt f ‖p(·) � C‖ f ‖p(·) , when p : Rn → [1,∞] satisfies conditions (3), (5)
and (6).

2.4. Riesz potential operator and Riesz fractional derivative

Recall that the Riesz potential operator, also known as fractional integral operator, is given by

Iα g(x) := 1

γn(α)

∫
Rn

g(y)

|x − y|n−α
dy, 0 < α < n, (17)

with the normalizing constant γn(α) = 2απ
n
2


( α
2 )


( n−α
2 )

. The hypersingular integral

Dα f (x) := 1

dn,�(α)

∫
Rn

��
y f (x)

|y|n+α
dy, (18)

where ��
y f (x) is a finite difference of order � > 2[α

2 ], is known as the Riesz fractional derivative, see [24, Chapter 3] or
[26, Sections 26] for the value of the normalizing constant dn,�(α). The condition � > 2[α

2 ] is known in the theory of
hypersingular integrals, see [24], and is a weaker assumption than just � > α, although applicable only in the case of non-
centered finite differences. It allows to make use of differences of lower order. For instance, in the case 0 < α < 2 one may
take � = 1, not necessarily � = 2.

It is known [24,26] that operator (18) is left inverse to the operator Iα within the frameworks of L p-spaces, which was
extended to variable exponent spaces L p(·)(Rn) in [1].

Everywhere in the sequel, � > α and is even.
When considered on functions in the range Iα(X) of the operator Iα over this or that space X , the integral in (18) is

always interpreted as the limit Dα f := limε→0 Dα
ε f in the norm of the space X , of the truncated operators

Dα
ε f (x) = 1

dn,�(α)

∫
|y|>ε

��
y f (x)

|y|n+α
dy. (19)

The following proposition was proved in [1, Theorem 5.5].

Proposition 8. Let p ∈ M(Rn) and 1 < p−(Rn) � p+(Rn) < n
α . Then

Dα Iαϕ = ϕ, ϕ ∈ Lp(·)(Rn),
where the hypersingular operator Dα is understood as convergent in L p(·)-norm.

We will also use the following result for variable exponent spaces, proved in [2, Theorems 3.2–3.3]. (Note that in [2] this
statement was formulated for p satisfying the log- and decay condition, but the analysis of the proof shows that it uses
only the fact that the maximal operator is bounded.)
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Proposition 9. Let p ∈ M(Rn), 1 < p−(Rn) � p+(Rn) < n
α , and let f be a locally integrable function. Then f ∈ Iα[L p(·)], if and only

if f ∈ Lq(·) , with 1
q(·) = 1

p(·) − α
n , and∥∥Dα

ε f
∥∥

p(·) � C (20)

where C does not depend on ε > 0.

It is known (see [24, p. 70]) that

F
(
Dα

ε f
)
(x) = K̂�,α(εx)|x|α f̂ (x), f ∈ C∞

0

(
Rn), (21)

where K̂�,α(x) is the Fourier transform of the function K�,α(x) with the property

K�,α(x) ∈ L1(Rn), ∫
Rn

K�,α(x)dx = 1. (22)

The function K̂�,α(x) is given explicitly by

K̂�,α(x) = (2i)�

dn,�(α)

∫
|y|>|x|

sin�(y1)

|y|n+α
dy. (23)

For brevity of notation, we will denote K̂�,α(x) simply as w(|x|), therefore

w(|x|) = c

∫
|y|>|x|

sin�(y1)

|y|n+α
dy = c

∞∫
|x|

V (ρ)

ρ1+α
dρ (24)

where

V (ρ) =
∫

Sn−1

sin�(ρσ1)dσ and c = (2i)�

dn,�(α)
. (25)

Lemma 10. The following formula is valid

V (ρ) = λ +
�
2 −1∑
i=0

Ci
Jν−1(�iρ)

(�iρ)ν−1
, (26)

where � = 2,4,6, . . . , Jν−1(r) is the Bessel function of the first kind, ν = n
2 , �i = � − 2i and λ and Ci are constants:

λ = 4π
n
2 
(�+1

2 )

�
( �
2 )
(n

2 )
, Ci = (−1)

�
2 −i(2π)

n
2 21−�

(
�

i

)
. (27)

Proof. Formula (26) is a consequence of the Catalan formula∫
Sn−1

sin�(ρσ1)dσ = ∣∣Sn−2
∣∣ 1∫
−1

sin�(ρt)
(
1 − t2) n−3

2 dt (28)

(see, for instance, [24, p. 13]), the Fourier expansion

sin�(t) = 1

2�−1

�
2 −1∑
i=0

(−1)
�
2 −i

(
�

i

)
cos

(
(� − 2i)t

) + 1

2�

(
�

�/2

)
(29)

of the function sin�(t) with even � (see, e.g., [18, Appendix I.1.9]), and the Poisson formula

Jν(ρ) = (ρ/2)ν


( 1
2 )
(ν + 1

2 )

1∫
−1

cos(ρt)
(
1 − t2)ν− 1

2 dt (30)

with �ν > − 1
2 for the Bessel function (see, e.g., [16]). The values in (27) are obtained by direct calculations via properties

of Gamma-function. �
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Following [23] (see also [24, p. 214]), we make use of the functions

A(x) = (1 − e−|x|)α

|x|α w(|x|) and B(x) = 1

A(x)
, x ∈ Rn, (31)

which will play a central role in this paper.
Since the functions A(x) and B(x) are radial, we find it convenient to also use the notation

A(r) = (1 − e−r)α

rα w(r)
and B(r) = rα w(r)

(1 − e−r)α
. (32)

2.5. Bessel potential operator

The Bessel potential of order α > 0 of the density ϕ is defined by

Bαϕ(x) =
∫
Rn

Gα(x − y)ϕ(y)dy (33)

where the Fourier transform of the Bessel kernel Gα is given by

Ĝα(x) = (
1 + |x|2)−α/2

, x ∈ Rn, α > 0.

Definition 11. We define the variable exponent Bessel potential space, sometimes also called Liouville space of fractional smooth-
ness, as the range of the Bessel potential operator

Bα
[
Lp(·)(Rn)] = {

f : f = Bαϕ, ϕ ∈ Lp(·)(Rn)}, α > 0.

The following characterization of the variable exponent Bessel potential space via hypersingular integrals was given in [2].

Proposition 12. Let 0 < α < n. If 1 < p− � p+ < n/α and p(·) satisfies conditions (5) and (6), then Bα(L p(·)) = L p(·) ∩ Iα(L p(·))
with equivalent norms.

3. Main results

We first prove that the functions A(x), B(x) defined in (31) are Fourier p(·)-multipliers in L p(·)(Rn) under suitable
exponents p(·), see Theorem 13, which proved to be the principal difficulty in extending the result in (2) to variable
exponents.

Theorem 13. The functions A(x) and B(x) are Fourier p(·)-multipliers when p(·) ∈ P (Rn).

Then by means of Theorem 13 we prove the following statements.

Theorem 14. Let f ∈ L p(·)(Rn), p(·) ∈ P (Rn) and let Dα
ε f be the truncated hypersingular integral (19). The limits

lim
ε→0+

1

εα
(I − Pε)

α f and lim
ε→0+ Dα

ε f (34)

exist in L p(·)(Rn) simultaneously and coincide with each other.

Corollary 15. Let α > 0 and p ∈ P (Rn). The equivalent characterization of the space Lα,p(·)(Rn) defined in (1), is given by

Lα,p(·)(Rn) =
{

f ∈ Lp(·)(Rn): lim
ε→0+

1

εα
(I − Pε)

α f ∈ Lp(·)(Rn)}.

Theorem 16. Let 0 < α < n, 1 < p− � p+ < n/α, p(·) ∈ P (Rn). A function f ∈ L p(·)(Rn) belongs to Lα,p(·)(Rn) if and only if∥∥(I − Pε)
α f

∥∥
p(·) � Cεα, (35)

where C does not depend on ε; condition (35) being fulfilled, it involves that Dα f ∈ L p(·)(Rn) and (35) is also valid in the form
‖(I − Pε)

α f ‖p(·) � C‖Dα f ‖p(·)εα where C does not depend on f and ε.

Theorem 17. Let 0 < α < n, 1 < p− � p+ < n/α and p(·) ∈ P (Rn). The variable exponent Bessel potential space Bα(L p(·)) is the
subspace in L p(·)(Rn) of functions f for which the limit limε→0+ 1

εα (I − Pε)
α f exists.
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4. Crucial lemmata

Lemma 18. The function B(r) defined in (32) is non-vanishing: infr∈R
1+ |B(r)| > 0.

Proof. The function B(r) is continuous in (0,∞) and |B(r)| > 0 for all r ∈ (0,∞). Therefore, it suffices to check that
B(0) �= 0 and B(∞) �= 0. From (22) it follows that B(0) = 1, while B(∞) = λ

α �= 0 is seen from the asymptotics (40) proved
in Lemma 20. �
Lemma 19. The following formula is valid

∞∫
0

f (t)tν Jν−1(rt)dt = (−1)m

rm

m∑
k=1

ck,m

∞∫
0

f (k)(t)tν+k−m Jν+m−1(rt)dt, m � 1, (36)

if

f (t)tν Jν(t)
∣∣∞
0 = 0

and

f (k)(t)tν+k− j Jν+ j(t)
∣∣∞
0 = 0, k = 1,2, . . . , j, j = 1,2, . . . ,m − 1,

the latter appearing in the case m � 2.

Proof. A relation of type (36) is known in the form

∞∫
0

f (t)tν Jν−1
(
t|x|)dt = (−1)m

|x|m
∞∫

0

f 〈m〉(t)tν+m Jν+m−1
(
t|x|)dt, (37)

under the conditions

f 〈 j〉(t)tν+ j Jν+ j(t)
∣∣∞
0 = 0, j = 0,1,2, . . . ,m − 1, (38)

see formula (8.133) in [23], where it is denoted f 〈m〉(t) = ( 1
t

d
dt )

m f (t). Then (36) follows from (37) if one observes that(
1

t

d

dt

)m

f (t) =
m∑

k=1

ck,m
f (k)(t)

t2m−k
, (39)

where ck,m are constants (here and in the sequel, by c, ck , ckm , c js , etc., we denote constants the exact values of which are
not important for us). �

The following lemmas are crucial for our purposes.

Lemma 20. The function B(r) has the following structure at infinity:

B(r) = λ

α
+ 1

rν

�
2 −1∑
i=0

Ci

�ν
i

Jν−2(�ir) + O

(
1

rν+ 3
2

)
, r → ∞, (40)

where λ and Ci are constants from (27).

Proof. By (24) and (26), we obtain

rα w(r) = λ

α
+ rα

�
2 −1∑
i=0

Ci

∞∫
r

Jν−1(�it)

t1+α(�it)ν−1
dt. (41)

By the well-known differentiation formula Jν (t)
tν−1 = − d

dt [ Jν−1(t)
tν−1 ] for the Bessel functions, via integration by parts we arrive at

the relation
∞∫

Jν(t)

tβ
dt = Jν−1(r)

rβ
+ (ν − β − 1)

∞∫
Jν−1(t)

tβ+1
dt, (42)
r r
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for r > 0 and β > − 1
2 . Applying repeatedly this formula two times, we transform (41) to

rα w(r) = λ

α
+

�
2 −1∑
i=0

Ci

�ν
i

[
Jν−2(�ir)

rν
− 2 + α

�i

Jν−3(�ir)

rν+1

]
+ (α + 2)(α + 4)

�
2 −1∑
i=0

rα

�i

∞∫
r

Jν−3(�it)

tα+ν+2
dt, 0 < r < ∞,

whence (40) follows, since B(r) = rα w(r) + O (e−r) as r → ∞. �
Lemma 21. The function A(r) has the following structure at infinity

A(r) = α

λ
+ C

rν

�
2 −1∑
i=0

ci

�ν
i

Jν−2(�ir) + h(r) + m(r) =: A3(r) + m(r), (43)

where m(r) satisfies Mikhlin’s condition and h(r) = O ( 1

rν+ 3
2
).

Proof. We have

1

rα w(r)
= α

λ
+ 1 − α

λ
rα w(r)

rα w(r)
.

Making use of the asymptotics obtained in Lemma 20 and the fact that rα w(r) > C �= 0 for sufficiently large r, we obtain

1

rα w(r)
= α

λ
−

(
α

λ

)2 1

rν

�
2 −1∑
i=0

ci

�ν
i

Jν−2(�ir) + s(r)

rα w(r)
− α

λ

1

rν

�
2 −1∑
i=0

ci

�ν
i

Jν−2(�ir)

[
1

rα w(r)
− α

λ

]
where

s(r) = −α(α + 2)

λ

(
(α + 4)

�
2 −1∑
i=0

rα

�i

∞∫
r

Jν−3(�it)

tα+ν+2
dt −

�
2 −1∑
i=0

Ci

�ν
i

Jν−3(�ir)

rν+1

)
. (44)

Applying the same process to the factor [ 1
rα w1(r)

− α
λ
] we obtain

1

rα w(r)
= α

λ
−

(
α

λ

)2 1

rν

�
2 −1∑
i=0

ci

�ν
i

Jν−2(�ir) + h(r)−
(

α

λ

)2 1

rn+α w(r)

�
2 −1∑
i=0

ci

�ν
i

Jν−2(�ir)

�
2 −1∑
i=0

ci

�ν
i

Jν−2(�ir)︸ ︷︷ ︸
:=m(r)

(45)

where

h(r) = s(r)

(
1

rα w(r)
− α

λrα+ν w(r)

�
2 −1∑
i=0

Ci

�ν
i

Jν−2(�ir)

)
. (46)

To see that m(r) satisfies Mikhlin’s condition is a matter of direct calculations. To obtain (43), we just need to take into
account (44)–(46) and the fact that A(r) = 1

rα w(r) + O (e−r). �
Lemma 22. The derivatives B(k)(r) have the following structure at infinity:

B(k)(r) = c

rk
+ 1

rν

�
2 −1∑
i=0

ci Jν−2(�ir) + O

(
1

rν+ 1
2

)
, r → ∞, (47)

where c and ci are constants.

Proof. By Leibniz’ formula it suffices to show that the derivatives [rα w(r)](k) have the same asymptotics at infinity as
in (47). We have

[
rα w(r)

](k) = ck,0rα−k w(r) +
k∑

ck, jr
α+ j−k w( j)(r). (48)
j=1
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From (24) we have w ′(r) = V (r)
r1+α , so that

[
rα w(r)

](k) = ck,0rα−k w(r) +
k−1∑
j=0

ck, j+1rα+ j+1−k d j

dr j

(
V (r)

r1+α

)
. (49)

Hence

[
rα w(r)

](k) = ck,0rα−k w(r) +
k−1∑
i=0

ck,ir
i−k V (i)(r). (50)

We make use of the relation(
d

dr

)i

=
[ i

2 ]∑
s=0

ci,sri−2sDi−s, D = d

r dr

and transform (50) to

[
rα w(r)

](k) = ck,0rα−k w(r) +
k−1∑
s=0

ck,sr2s−kDs V (r),

keeping in mind formula (26). Then by (26) and the following formula Ds[ Jν (r)
rν ] = (−1)s Jν+s(r)

rν+s , after easy transformations
we arrive at the equality

[
rα w(r)

](k) = crα−k w(r) + c1r−k +
k−1∑
s=0

r−ν−s

�
2 −1∑
i=0

cs,i Jν+k−s−2(�ir)

for 0 < r < ∞. In view of (40), we arrive then at (47). �
Lemma 23. The derivatives A(k)

3 (r) have the following structure at infinity

A(k)
3 (r) = c

rk
+ 1

rν

�
2 −1∑
i=0

ci Jν−2(�ir) + O

(
1

rν+ 1
2

)
, r → ∞, (51)

where c, ci are constants and A3(r) is given in (43).

Proof. By the fact that dk

drk [A3(r) − h(r)] = O ( 1

rν+ 1
2
), we just need to take care of the asymptotic of h(r).

By (46), we have

h(r) = s(r)v(r)
1

rα w(r)

where

v(r) = 1 − α

λrν

�
2 −1∑
i=0

Ci

�i
Jν−2(�ir).

Taking into account the fact that

s(k)(r) = O

(
1

rν+ 3
2

)
, v(k)(r) =

{
O (1), k = 0,

O ( 1

rν+ 1
2
), k = 1, . . . ,n,

and (
1

rα w(r)

)(k)

= c

rk
+ 1

rν

�
2 −1∑
i=0

ci Jν−2(�ir) + O

(
1

rν+ 1
2

)
(52)

we arrive at (51). To obtain (52), we just use formula (72) and asymptotic (47). �
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5. Proofs of the main result

5.1. Proof of Theorem 13

When we verify that A(r) and B(r) are p(·)-Fourier multipliers, we split the functions into portions covered by different
means, some by the Mikhlin condition, others by establishing properties of the corresponding kernels. Under this approach,
the result for 1

B(r) does not follow automatically from that for B(r) and we have to treat both. Since both B(r) and A(r)
have similar behaviour at the origin and infinity, we give all the details of the proof for B(r) and mention principal points
for the proof in the case of A(r), the details of the proof being the same.

We need to deal with the behaviour of B(r) in different ways near the origin and infinity. To this end, we make use of
a unity partition 1 ≡ μ1(r) + μ2(r) + μ3(r), μi ∈ C∞ , i = 1,2,3, where

μ1(r) =
{

1 if 0 � x < ε,

0 if x � ε + δ,
μ3(r) =

{
0 if 0 � x < N − δ,

1 if x � N,
(53)

with suppμ1 = [0, ε + δ], suppμ3 = [N − δ,∞), and represent B(r) as

B(r) =
(

1 − e−r

r

)−α

w(r)μ1(r) + B(r)μ2(r) + (
1 − e−r)−α

rα w(r)μ3(r) =: B1(r) + B2(r) + B3(r). (54)

The function B2(r) vanishing in the neighbourhoods of the origin and infinity, is infinitely differentiable, so that it is
a Fourier multiplier in L p(·)(Rn). Therefore, we only have to take care of the multipliers B1(r) and B3(r) supported in
neighbourhoods of origin and infinity, respectively. They will be treated in a different way. For B1(r) we will apply the
Mikhlin criterion for the spaces L p(·)(Rn), while the case of the multiplier B3(r) proved to be more difficult. In the case
n = 1 it is easily covered by means of the Mikhlin criterion, while for n � 2 we use another approach. Namely, we show
that the kernel b3(|x|), corresponding to the multiplier

B3(r) − B3(∞) = μ3(r)B(r) − B(∞), (55)

has an integrable radial non-increasing majorant, which will mean that B3(r) is certainly a multiplier. However, this will
require the usage of special facts on behaviour of the Bessel functions at infinity and an information on some of integrals
of Bessel functions.

The proof of Theorem 13 follows from the study of the multipliers B1(r) and B3(r) made in Sections 5.1.1 and 5.1.2
combined with Lemma 7.

5.1.1. Proof for the case of the multiplier B1(r)

Lemma 24. The function B1(r) satisfies Mikhlin condition (9).

Proof. We have to check condition (9) only near the origin.
The function g(r) := r

1−e−r with g(0) �= 0 is non-vanishing in any neighbourhood of the origin. Therefore, the function
( r

1−e−r )
α = [g(r)]α is infinitely differentiable on any finite interval [0, N] and thereby satisfies conditions (9) on every

neighbourhood of the origin.

Thus, to estimate rk dk

drk B1(r), we only need to show the boundedness of |rk w(k)(r)| as r → 0. By the equivalence (9) ⇐⇒
(10), we may estimate (r d

dr )
j w(r). Since w ′(r) = −cr−1−α V (r) by (24), we only have to prove the estimate

∣∣∣∣(r
d

dr

) j

G(r)

∣∣∣∣ � C < ∞, j = 1,2, . . . ,n − 1, for 0 < r < ε, (56)

where G(r) = r−α
∫

Sn−1 sin�(rσ1)dσ . We represent G(r) as

G(r) = r�−α F (r), F (r) :=
∫

Sn−1

s(rσ1)σ
�
1 dσ

where s(t) = ( sin t
t )� is an analytic function and therefore F (r) is an analytic function in r. Then estimate (56) becomes

obvious since � − α > 0. �
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5.1.2. Proof for the case of the multiplier B3(r)
As mentioned above, we treat separately the cases n = 1 and n � 2.
In the case n = 1 we just have to show that B(r) and rB′(r) are bounded on [0,∞]. The boundedness of B3(r) is evident

on any subinterval (N, N1), N1 > N and it suffices to note that there exist the finite value B(∞), see the proof of Lemma 18.
To show that rB′

3(r) is bounded, it suffices to check that r[rα w(r)]′ is bounded for large r. From (24) we have

r
[
rα w(r)

]′ = rα w(r) − c sin� r,

which is bounded.
We pass now to the case n � 2.

Lemma 25. Let n � 2. The kernel b3(r) is vanishing at infinity faster than any power and admits the estimate:∣∣b3(r)
∣∣ � C

r
n−1

2 (1 + r)m
, 0 < r < ∞, (57)

where m = 1,2,3, . . . is arbitrarily large, and C = C(m) does not depend on r.

Proof. (1) Estimation as r → 0. By the Fourier inversion formula for radial functions we have

b3(r) = (2π)−ν

rν−1

∞∫
0

tν Jν−1(rt)
[

B3(t) − B3(∞)
]

dt, ν = n

2
. (58)

From (58) we have

∣∣b3(r)
∣∣ � (2π)−ν

rν−1

N∫
N−δ

tν
∣∣ Jν−1(rt)

[
B3(t) − B(∞)

]∣∣dt +
∣∣∣∣∣ (2π)−ν

rν−1

∞∫
N

tν Jν−1(rt)
[

B(t) − B(∞)
]

dt

∣∣∣∣∣. (59)

We make use of the asymptotics obtained in (40) and get

∣∣b3(r)
∣∣ � c

rν−1/2
+

�
2 −1∑
i=0

ci

rν−1

∣∣∣∣∣
∞∫

N

Jν−1(rt) Jν−2(�it)dt

∣∣∣∣∣ + c

rν−1

∞∫
N

tν
∣∣ Jν−1(rt)

∣∣ dt

tν+ 3
2

, (60)

where ci are constants. Since | Jν−1(t)| � ctν−1

(t+1)
ν−1+ 1

2
, the last term is easily estimated:

c

rν−1

∞∫
N

tν
∣∣ Jν−1(rt)

∣∣ dt

tν+ 3
2

� c

rν− 1
2

∞∫
N

tν−1

(t + 1
r )ν− 1

2

dt

t
3
2

� c

rν− 1
2

.

Thus

∣∣b3(r)
∣∣ � c

rν− 1
2

+
�
2 −1∑
i=0

ci

rν−1

∣∣∣∣∣
∞∫

N

Jν−1(rt) Jν−2(�it)dt

∣∣∣∣∣
as r → 0. It is known that the integral

∫ ∞
0 Jν−1(rt) Jν−2(�it)dt converges when n � 2; it is equal to zero, if n > 2 and − 1

�i
,

if n = 2, see [8, formula 6.512.3] (use also the fact that Jν−2(r) = J−1(r) = − J1(r) if n = 2). Then

∣∣b3(r)
∣∣ � c

rν− 1
2

+
�
2 −1∑
i=0

ci

rν−1

∣∣∣∣∣
N∫

0

Jν−1(rt) Jν−2(�it)dt

∣∣∣∣∣ � c

rν− 1
2

which proves (57) as r → 0.
(2) Estimation as r → ∞. Since the integral in (58) is not absolutely convergent for large t , it is not easy to treat the case

r → ∞ starting from the representation (58). So we transform this representation. We interpret the integral in (58) in the
sense of regularization:

b3(r) = lim
ε→0

(2π)−ν

rν−1

∞∫
e−εttν Jν−1(rt)

[
B3(t) − B3(∞)

]
dt (61)
0
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and before to pass to the limit in (61), apply formula (36) with f (t) = e−εt[B3(t) − B3(∞)]. Then conditions (38) are
satisfied so that formula (36) is applicable and after easy passage to the limit we obtain

b3(r) = (−1)m(2π)−ν

rν+m−1

m∑
k=1

cm,k

∞∫
0

tν+k−m Jν+m−1(rt)B(k)
3 (t)dt (62)

for every m � 1. The last representation already allows to obtain the estimation as r → ∞. From (62) we get

∣∣b3(r)
∣∣ � c

rν+m−1

N∫
N−δ

tν
∣∣ Jν+m−1(rt)B(m)(t)

∣∣dt + c

rν+m−1

∣∣∣∣∣
∞∫

N

tν Jν+m−1(rt)B(m)(t)dt

∣∣∣∣∣
+

m−1∑
k=1

ck

rν+m−1

∞∫
N

tν+k−m
∣∣ Jν+m−1(rt)B(k)(t)

∣∣dt. (63)

The function B(m)(t) is bounded on [N − δ, N] so that the estimation of the first term is obvious. Since | Jν+m−1(rt)| � c√
rt

and |B(k)(t)| � ct−ξ , ξ = min{k, ν + 1/2}, see (47), the last sum in (63) is estimated by c

rν+m− 3
2

.

It remains to estimate the second term. We make use of the asymptotics in (47) again and obtain

∣∣b3(r)
∣∣ � 1

rν+m− 3
2

(
c +

�
2 −1∑
i=1

ci

∣∣∣∣∣
∞∫

N

Jν+m−1(rt) Jν−2(�it)dt

∣∣∣∣∣
)

. (64)

It is known that the last integral converges when ν + m
2 > 1 and

∞∫
0

Jν+m−1(rt) Jν−2(�it)dt = γ

rν−1
, r > �i,

where γ is a constant (γ = �ν−2
i


(ν−1+ m
2 )


(ν−1)
(1+ m
2 )

), see [8, formula 6.512.1]. Then from (64) we get (57).

Finally, for the function A(r), we only note that the splitting is similar:

A(r) = A1(r) + A2(r) + m(r) + A3(r),

where supp Ai(r) = suppμi and suppm(r) = suppμ3.
It is easy to see that the functions Ai(r), i = 1,2 satisfy Mikhlin’s condition. The proof for A3(r), prepared by Lemmas 21

and 23, is similar to that for B3. �
5.2. Proof of Theorem 14

Proof. Assume that the limit limε→0+ Dα
ε f in (34) exists. We express 1

εα (I − Pε)
α f via ϕε(x) := Dα

ε f (x) in “averaging”
terms:

1

εα
(I − Pε)

α f (x) = cϕε(x) + 1

εn

∫
Rn

a

(
x − y

ε

)
ϕε(y)dy (65)

where a(x) ∈ L1(Rn) and a(x) is the inverse Fourier transform of the function A(x) − A(∞), c = A(∞) and

c +
∫
Rn

a(y)dy = 1. (66)

Representation (65)–(66), verified via Fourier transforms:

F

(
1

εα
(I − Pε)

α f

)
(x) = A(εx)F

(
Dα

ε f
)
(x) (67)

was given in [23] for the case of constant p and thus valid for f ∈ C∞
0 (Rn). Then (65) holds for f ∈ L p(·)(Rn) by the

continuity of the operators on the left-hand and right-hand sides in L p(·)(Rn); for the left-hand side see (16), while the
boundedness of the convolution operator on the right-hand side follows from the fact that the Fourier transform of its
kernel is a Fourier p(·)-multiplier by Theorem 13.
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With ϕ = Dα f = limε→0 ϕε , from (67) we have∥∥∥∥ 1

εα
(I − Pε)

α f − ϕ

∥∥∥∥
p(·)

� C‖ϕε − ϕ‖p(·) + ‖Tεϕ − ϕ‖p(·) (68)

where Tε is the operator generated by the multiplier A(ε·). The first term in the right-hand side of (68) tends to zero by
the definition of ϕ and Proposition 8. Regarding the second term, we have

‖Tεϕ − ϕ‖p(·) � ‖T Mϕ − ϕ‖p(·) + ‖Taϕ‖p(·) = I1 + I2

where T M is the operator given by the multiplier M(ε·) := A1(ε·) + A2(ε·) + m(ε·). Since M satisfies Mikhlin’s condition
and M(εx) → 1 as ε → 0 for almost all x ∈ Rn , we have I1 → 0 as ε → 0 by Lemma 6.

For I2 we observe that

Taϕ(x) = −A3(∞)
[
(a3)ε ∗ ϕ(x) − ϕ(x)

]
(69)

where (a3)ε is the dilatation of the kernel a3(x) = F −1[A3(·) − A(∞)](x) and then I2 → 0 as ε → 0 by Proposition 3 and
Lemma 25.

Suppose now that limε→0+ 1
εα (I − Pε)

α f exists in L p(·)(Rn). By (67) we have

F
(
Dα

ε f
)
(x) = B(εx)F

(
(I − Pε)

α f

εα

)
(x) (70)

for f ∈ C∞
0 (Rn), where B(x) = 1/A(x). Since B(x) is also a Fourier multiplier by Theorem 13, the arguments are the same

as in the above passage from limε→0 Dα
ε f to limε→0+ 1

εα (I − Pε)
α f . �

5.3. Proof of Theorem 16

The “only if” part of Theorem 16 is a consequence of Theorem 14.
To prove the “if” part, suppose that (35) holds. From (70) we obtain that∥∥Dα

ε f
∥∥

p(·) � C

∥∥∥∥ 1

εα
(I − Pε)

α f

∥∥∥∥
p(·)

� C,

since A(εx) is a uniform Fourier multiplier in L p(·)(Rn) by Theorem 17 and Lemma 5. To finish the proof, it remains to refer
to Theorems 9 and 8.

5.4. Proof of Theorem 17

Theorem 17 is an immediate consequence of Theorem 14 and Propositions 12 and 8.

Appendix A

The following recurrence formula for the k-th derivative of the quotient is valid (see, e.g., [29,9])(
u

v

)(k)

= 1

v

(
u(k) − k!

k∑
j=1

v(k+1− j)

(k + 1 − j)!
( u

v )( j−1)

( j − 1)!

)
. (71)

By means of this formula, by induction it is not hard to check the validity of the following formula for the k-th derivative
of the fraction 1

v(x) , x ∈ R1:

dk

dxk

(
1

v

)
= v(k)

v2
+

k−1∑
j=1

A j,k(D)v

v j+1
+ (−1)kk! (v ′)k

vk+1
(72)

where the differential operators A j,k(D) of order k have the form

A j,k(D)v = a j

[
dm j v

dxm j

]α j
[

dn j v

dxn j

]β j

+ b j

[
dp j v

dxp j

]γ j
[

dq j v

dxq j

]δ j

where a j and b j are constants, m j,n j, p j,q j,α j, β j, γ j, δ j are integers in [1,k − 1] such that

m jα j + n jβ j = p jγ j + q jδ j = k. (73)
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