期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:488
Semiclassical states for Dirac-Klein-Gordon system with critical growth
Article
Ding, Yanheng1,2  Guo, Qi1,2  Yu, Yuanyang1,2 
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词: Dirac-Klein-Gordon system;    Least energy solutions;    Concentration;    Critical;   
DOI  :  10.1016/j.jmaa.2020.124092
来源: Elsevier
PDF
【 摘 要 】

In this paper, we study the following critical Dirac-Klein-Gordon system in R-3: {i epsilon Sigma(3)(k=1) alpha(k)partial derivative(k)u - alpha beta u + V(x)u - lambda phi beta u = P(x) f (vertical bar u vertical bar)u + Q(x) vertical bar u vertical bar u, -epsilon(2)Delta phi + M phi + 4 pi lambda(beta u) . u, where epsilon > 0 is a small parameter, alpha > 0 is a constant. We prove the existence and concentration of solutions under suitable assumptions on the potential V(x), P(x) and Q(x). We also show the semiclassical solutions w E with maximum points w(epsilon) concentrating at a special set H-P characterized by V(x), P(x) and Q(x), and for any sequence x(epsilon) -> x(0 )is an element of H-p, v(epsilon) (x) := w(epsilon) (epsilon x + x(epsilon)) converges in H-1 (R-3 , C-4) to a least energy solution u of {i Sigma(3)(k=1) alpha(k)partial derivative(k)u - alpha beta u + V(x(0))u - lambda phi beta u = P(x(0)) f (vertical bar u vertical bar)u + Q(x(0)) vertical bar u vertical bar u, -Delta phi + M phi + 4 pi lambda(beta u) . u. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_124092.pdf 536KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次