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In this paper, we study the following critical Dirac-Klein-Gordon system in R3:

⎧⎪⎨
⎪⎩
iε

3∑
k=1

αk∂ku− aβu + V (x)u− λφβu = P (x)f(|u|)u + Q(x)|u|u,

−ε2Δφ + Mφ = 4πλ(βu) · u,

where ε > 0 is a small parameter, a > 0 is a constant. We prove the existence and 
concentration of solutions under suitable assumptions on the potential V (x), P (x)
and Q(x). We also show the semiclassical solutions ωε with maximum points xε

concentrating at a special set HP characterized by V (x), P (x) and Q(x), and for 
any sequence xε → x0 ∈ HP , vε(x) := ωε(εx + xε) converges in H1(R3, C4) to a 
least energy solution u of

⎧⎪⎨
⎪⎩
i

3∑
k=1

αk∂ku− aβu + V (x0)u− λφβu = P (x0)f(|u|)u + Q(x0)|u|u,

−Δφ + Mφ = 4πλ(βu) · u.

© 2020 Elsevier Inc. All rights reserved.
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1. Introduction and main results

The nonlinear Dirac equation

−i�∂tψ = ic�
3∑

k=1

αk∂kψ −mc2βψ −M(x)ψ + Gψ(x, ψ), (1.1)

has been widely used to build relativistic models of extended particles by means of nonlinear Dirac fields, 
where ψ represents the wave function of the state of an electron, c denotes the speed of light, m > 0, the 
mass of the electron, � is Planck’s constant and ∂k = ∂

∂xk
, α1, α2, α3 and β are 4 × 4 Pauli-Dirac matrices 

(in 2 × 2 blocks):

β =
(
I2 0
0 −I2

)
, αk =

(
0 σk

σk 0

)
, k = 1, 2, 3,

with

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

It is not difficult to check that β and αk satisfy the following anticommutation relations

⎧⎪⎪⎨
⎪⎪⎩
αkαl + αlαk = 2δklI4,
αkβ + βαk = 0,
β2 = I4.

Different functions G model various types of self-coupling (see [27]). Such equations arise when one seeks 
for standing wave solutions of the nonlinear Dirac equation which describes the self-interaction in quantum 
electrodynamics and has been used as effective theories in atomic, and gravitational physical (see [31]). A 
standing wave solution of equation (1.1) is a solution of the form

ψ(t, x) = e−
iξt
� u(x), ξ ∈ R, t ∈ R, u : R3 → C4,

and u(x) solves the equation

−iε
3∑

k=1

αk∂ku + aβu + V (x)u = Fu(x, u) (1.2)

with ε = �, a = mc > 0, V (x) = M(x)−ξ
c and F (x, u) = G(x,u)

c , where G satisfies that G(x, eiθψ) = G(x, ψ). 
In the past decades, there are many works dedicated to study the Dirac equation (1.2) with the potential and 
the nonlinearity under several various hypotheses, see [2,4,10,15,17,25,32,34] and the references therein for 
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the existence and multiplicity of solutions, and see [8,9,14,33] and the references therein for the concentration 
of semiclassical solutions.

If the Dirac field ψ ∈ C4 of equation (1.1) interacts with a scalar field φ ∈ R, then one lead to study the 
following Dirac-Klein-Gordon system involving an external self-coupling:⎧⎪⎨

⎪⎩
i�

c∂tψ + i�
3∑

k=1
αk∂kψ −mcβψ − λφβψ = h(x, ψ),

�
2

c2 ∂
2
t φ− �

2Δφ + Mφ = 4πλ(βψ) · ψ
(1.3)

for (t, x) ∈ R × R3, where αk, ∂k, β, c, �, m as above and λ > 0 is coupling constant, M is the mass of 
the meson. System (1.3) arises in mathematical models of particle physics, especially in nonlinear topics. 
This system is inspired by approximate descriptions of the external force involve only functions of fields. 
The nonlinear self-coupling h(x, ψ), which describes a self-interaction in Quantum electrodynamics, gives 
a closer description of many particles found in the real world. Various nonlinearities are considered to be 
possible basis models for unified filed theories, see [18,19,22] and references therein.

System (1.3) has been studied for a long time with null external self-coupling, i.e., h ≡ 0, and there are 
some results concerning the Cauchy problem, see [3,5,6,16,24,28]). The first result on the global existence 
and uniqueness of solutions of (1.3) (in one space dimension) was obtained by J.M. Chadam in [5] under 
suitable assumptions. Later, J.M. Chadam and R.T. Glasset [6] obtained the existence of a global solution in 
three space dimensionals. In [3], N. Bournaveas obtained low regularity solutions of the Dirac-Klein-Gordon 
system by using classical Strichartz-type time-space estimates. In [16], Esteban et al. obtained infinite many 
solutions by the variational arguments.

Likewise, a standing wave solution of system (1.3) is a solution of the form
{
ψ(t, x) = u(x)e− iξt

� , ξ ∈ R, t ∈ R, u : R3 → C4,

φ = φ(x),

and u(x) solves the equation
⎧⎪⎨
⎪⎩
iε

3∑
k=1

αk∂ku− aβu + ωu− λφβu = h(x, u),

−ε2Δφ + Mφ = 4πλ(βu) · u,
(1.4)

with ε = �, a = mc > 0, ω = ξ
c , where h satisfies that h(x, eiθψ) = eiθh(x, ψ). A solution u is referred to as 

a bound state of (1.4) if u → 0 as |x| → ∞. When ε is sufficiently small, bound states of (1.4) are called 
semiclassical states, and an important feature of semiclassical states is their concentration as ε → 0. To 
the best of our knowledge, there are few results concerning the concentration phenomenon of solutions to 
(1.4) except for work [13]. In [13], the authors developed cutting-off technique to obtain the existence and 
concentration of semiclassical solutions which seems the first one to consider the concentration behavior of 
semiclassical solutions of the Dirac-Klein-Gordon system with general nonlinearity.

Motivated by the references mentioned above, in this paper we consider the following critical Dirac-Klein-
Gordon system in R3:⎧⎪⎨

⎪⎩
iε

3∑
k=1

αk∂ku− aβu + V (x)u− λφβu = P (x)f(|u|)u + Q(x)|u|u,

−ε2Δφ + Mφ = 4πλ(βu) · u,
(1.5)

where ε > 0 is a small parameter, a > 0 is a constant, V, P, Q ∈ C(R3, R) are three bounded functions, 
V (x) has negative global minimum and P (x), Q(x) have positive global maximum. Note that 3 is the 
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critical exponent since the relevant Sobolev embedding is H 1
2 (R3, C4) ↪→ L3(R3, C4). Thus, the term |u|u

has critical growth, while f(|u|)u is assumed to be subcritical.
The aim of this paper is to focus on studying how the behavior of three potentials affect the existence and 

concentration of semiclassical solutions of system (1.5). Note that, in view of the presence of critical exponent 
term, this makes it more difficult to study the problem. It is natural to ask how about the concentration 
behavior of solutions of system (1.5) as ε → 0+? As far as we know such a critical problem was not 
considered before. There are some difficulties in such a problem. The first one is that (1.5) involves three 
different potentials which make our problem more complicated than that of [10]. This brings a competition 
between the potentials V, P and Q: each would try to attract ground states to their minimum and maximum 
points, respectively. Moreover, this makes the concentration sets more complex and we have to overcome 
many difficulties, as we shall see in the following section. The second one is the presence of the nonlocal term 
φ in (1.5), and this prevent us to use the Mountain-Pass reduction technique as [1]. In order to overcome this 
obstacle, we take advantage of the cut-off arguments developed by Ding and Xu in [13]. Roughly speaking, 
an accurate uniformly boundedness estimate on (C)c-sequences of the associate energy functional Φε enables 
us to introduce a new functional Φ̃ε by virtue of the cut-off technique so that Φ̃ε has the same least energy 
solutions as Φε and can be dealt with more easily the influence of these nonlocal term for each λ > 0 small.

In this paper, we will give an answer to the above question. First, we obtain a least energy solution 
via cutting off technique for each ε > 0 small enough. Next, we study the concentration behavior of these 
solutions as ε → 0. We determine a concrete set related to the potentials V, P and Q as the concentration 
position of these solutions. Roughly speaking, the least energy solutions concentrate at such points x where 
V (x) is small or both P (x) and Q(x) are large. For a special case, we show that, as ε → 0, these least 
energy solutions concentrate around such points which are both the minima points of the potential V and 
the maximum points of the potential P and Q. At last, we establish the exponential decay estimate of these 
solutions.

For notational convenience, writing α = (α1, α2, α3) and α · ∇ =
3∑

k=1
αk∂k, we reread system (1.5) as

{
iεα · ∇u− aβu + V (x)u− λφβu = P (x)f(|u|)u + Q(x)|u|u,
−ε2Δφ + Mφ = 4πλ(βu) · u.

To state our main results, we need the following assumptions on the nonlinear self-coupling:

(f1) f(0) = 0, f ∈ C1(R, [0, ∞)), f ′(t) > 0 for t > 0, and there exist p ∈ (2, 3), c1 > 0 such that

f(t) ≤ c1(1 + tp−2) for all t ≥ 0;

(f2) there exist σ > 2 and c0 > 0 such that F (t) ≥ c0t
σ for all t > 0, where F (t) =

´ t

0 f(s)sds.

Clearly, the power function f(t) = tq−2 for t ≥ 0 satisfies assumptions (f1)-(f2), where 2 < q ≤ p. Set

Rσ :=
(
S

3
2 c

2
σ−2
0

6γ

)σ−2

where S denotes the Sobolev embedding constant: S|u|26 ≤ |∇u|22 for all u ∈ H1(R3, R) and γ is the least 
energy of the following subcritical equation (which exists, see [8] for a similar argument)

iα · ∇u− aβu = |u|σ−2u

and c0 is defined in assumption (f2).
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Remark 1.1. Note that, (f1) implies that for each ε > 0, there is Cε > 0 such that

f(t) ≤ ε + Cεt
p−2 and F (t) ≤ εt2 + Cεt

p, ∀t ≥ 0, (1.6)

and

F (t) > 0 and F̂ (t) := f(t)t2 − 2F (t) > 0, ∀t > 0. (1.7)

We need some notations to help us to determine the concentration set of solutions. Set

Vmin := min
x∈R3

V (x), Vmax := sup
x∈R3

V (x), V := {x ∈ R3 : V (x) = Vmin}, V∞ := lim inf
|x|→∞

V (x), (1.8)

Pmin := inf
x∈R3

P (x), Pmax := max
x∈R3

P (x), P := {x ∈ R3 : P (x) = Pmax}, P∞ := lim sup
|x|→∞

P (x), (1.9)

Qmin := inf
x∈R3

Q(x), Qmax := max
x∈R3

Q(x), Q := {x ∈ R3 : Q(x) = Qmax}, Q∞ := lim sup
|x|→∞

Q(x), (1.10)

VQ := min
x∈Q

V (x), PQ := max
x∈Q

P (x). (1.11)

Moreover, we assume that V (x) ≤ 0, Vmin ∈ (−a, 0], Pmin > 0, Qmin > 0, and

(A1) PQ > P∞ and there exists xP ∈ CP such that V (xP ) ≤ V (x) for |x| ≥ R with R > 0 sufficiently large, 
where CP := {x ∈ Q : P (x) = PQ}.

We set

HP = {x ∈ CP : V (x) ≤ V (xP )} ∪ {x ∈ Q \ CP : V (x) < V (xP )} ∪ {x /∈ Q : P (x) > PQ or V (x) < V (xP )}.

Remark 1.2.

(1) Obviously, xP ∈ HP and then HP is non-empty and bounded by (1.8)-(1.11).
(2) If P ∩Q �= ∅, we can set V (xP ) = min

x∈P∩Q
V (x) and

HP = {x ∈ P ∩Q : V (x) = V (xP )} ∪ {x /∈ P ∩Q : V (x) < V (xP )}.

In particular, if P (x) ≡ Q(x) or Q(x) is a constant function, we can let V (xP ) = min
x∈P

V (x) and

HP = {x ∈ P : V (x) = V (xP )} ∪ {x /∈ P : V (x) < V (xP )},

which is just the case in [10].
(3) If V ∩ P ∩Q �= ∅, we can set V (xP ) = min

x∈V∩P∩Q
V (x) and

HP = {x ∈ V ∩ P ∩Q : V (x) = V (xP )},

which implies that HP = V ∩ P ∩Q.

Define

α0 := ( a

P∞
)2(Qmax

a
)2(σ−2), α1 :=

(
a− |V |∞

a

)12−5σ

( a

P∞
)2(Qmax

a
)2(σ−2).

Now we state our main results as follows.
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Theorem 1.1. Assume that (f1)-(f2) and (A1) hold, and if 2 < σ ≤ 12
5 with α0 ≤ Rσ or 12

5 < σ < 3 with 
α1 ≤ Rσ. Then there exists λ0 > 0 such that given λ ∈ (0, λ0], for any ε > 0 small:

(i) The system (1.5) has a least energy solution ωε.
(ii) |ωε| possesses a maximum point xε such that, up to a subsequence, xε → x0 as ε → 0, 

lim
ε→0

dist(xε, HP) = 0, and vε(x) := ωε(εx + xε) converges in H1(R3, C4) to a least energy solution of

{
iα · ∇u− aβu + V (x0)u− λφβu = P (x0)f(|u|)u + Q(x0)|u|u,
−Δφ + Mφ = 4πλ(βu) · u.

In particular if V ∩P ∩Q �= ∅, then lim
ε→0

dist(xε, V ∩P ∩Q) = 0, and up to a subsequence, vε converges 
in H1(R3, C4) to a least energy solution of

{
iα · ∇u− aβu + Vminu− λφβu = Pmaxf(|u|)u + Qmax|u|u,
−Δφ + Mφ = 4πλ(βu) · u.

(iii) There are positive constants C1, C2 independent of ε such that

|ωε(x)| ≤ C1e
−C2

ε |x−xε|, ∀x ∈ R3.

This paper is organized as follows. In section 2, we present some preliminary notions on the Dirac 
operator, introduce the modified functional by cutting approach and give some basic results which will be 
used later. In section 3, we prove the existence of least energy solutions of system (1.5) for small ε > 0. In 
section 4, we study the concentration phenomenon and convergence of least energy solutions. In section 5, 
we prove the exponential decay of solutions. Finally, we give the proof of Theorem 1.1.

Notation. Throughout this paper, we make use of the following notations.

• For any R > 0 and for any x ∈ R3, BR(x) denotes the ball of radius R centered at x;
• | · |q denotes the usual norm of the space Lq(R3, C4), 1 ≤ q ≤ ∞;
• on(1)(oε(1)) denotes on(1)(oε(1)) → 0 as n → ∞(ε → 0);

• u · v denotes the scalar product in C4 of u and v, i.e., u · v =
4∑

i=1
uiv̄i;

• C or Ci(i = 1, 2, · · · ) are some positive constants may change from line to line.

2. The functional-analytic setting and preliminary results

2.1. The functional-analytic setting

For convenience, let

H0 := iα · ∇ − aβ

denotes the Dirac operator. It is well known that H0 is a selfadjoint operator on L2(R3, C4) with domain 
D(H0) = H1(R3, C4), then by [2, Lemma 3.3(b)], we know that

σ(H0) = σc(H0) = R \ (−a, a)
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where σ(H0) and σc(H0) denote the spectrum and continuous spectrum of operator H0. Thus the space 
L2(R3, C4) possesses the orthogonal decomposition:

L2 = L− ⊕ L+, u = u− + u+

so that H0 is negative definite on L− and positive definite on L+. Let |H0| denote the absolute value of H0
and |H0|

1
2 denote its square root. Define E := D(|H0|

1
2 ) = H

1
2 be the Hilbert space with the inner product

(u, v) = �(|H0|
1
2u, |H0|

1
2 v)L2

and the induced norm ‖u‖ = (u, u) 1
2 , where � stands for the real part of a complex number. Since σ(H0) =

R \ (−a, a), one has

a|u|22 ≤ ‖u‖2, for all u ∈ E. (2.1)

Note that this norm is equivalent to the usual H 1
2 -norm, hence E embeds continuously into Lq(R3, C4) for 

all q ∈ [2, 3] and compactly into Lq
loc(R3, C4) for all q ∈ [1, 3). That is, there exists constant τq > 0 such 

that

|u|q ≤ τq‖u‖, for all u ∈ E. (2.2)

Moreover, it is clear that E possesses the following decomposition

E = E− ⊕ E+, where E± = E ∩ L±

which is decomposition orthogonal with respect to inner products (·, ·)L2 and (·, ·). Furthermore, from [14, 
Proposition 2.1], this decomposition induces of E also a natural decomposition of Lq(R3, C4), hence there 
is cq > 0 such that

cq|u±|qq ≤ |u|qq for all u ∈ E. (2.3)

Recall that by the Lax-Milgram theorem, we know that for every u ∈ H1(R3, C4), there exists a unique 
φu ∈ H1(R3, R) such that −Δφu + Mφu = 4πλ(βu) · u and φu can be repressed by

φu(x) = λ

ˆ

R3

[(βu)u](y)
|x− y| e−

√
M |x−y|dy.

Making the change of variable x �→ εx, we can rewrite the system (1.5) as the following equivalent system
⎧⎨
⎩
iα · ∇u− aβu + V (εx)u− λφβu = P (εx)f(|u|)u + Q(εx)|u|u,

−Δφ + Mφ = 4πλ(βu) · u.
(2.4)

If u is a solution of the system (2.4), then ω(x) := u(xε ) is a solution of the system (1.5). Thus, to study the 
system (1.5), it suffices to study the system (2.4).

On E, we define the energy functional Φε corresponding to system (2.4) by

Φε(u) = 1
2‖u

+‖2 − 1
2‖u

−‖2 + 1
2

ˆ
V (εx)|u|2dx−Nλ(u) − Ψε(u),
R3
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for u = u+ + u− ∈ E, where

Nλ(u) = λ

4

ˆ

R3

φu · (βu)udx = λ2

4

¨

R3×R3

[(βu)u](x)[(βu)u](y)
|x− y| e−

√
M |x−y|dxdy,

and

Ψε(u) =
ˆ

R3

P (εx)F (|u|)dx + 1
3

ˆ

R3

Q(εx)|u|3dx.

It follows by standard arguments that Φε ∈ C2(E, R). Also, for any u, v ∈ E, one has

Φ′
ε(u)v = (u+ − u−, v) + �

ˆ

R3

V (εx)u · vdx−N ′
λ(u)v − Ψ′

ε(u)v,

where

N ′
λ(u)v = λ

ˆ

R3

φu · �(βu)vdx.

Moreover, it is proved that critical points of Φε are weak solutions of system (2.4) in [13, Lemma 2.1].

2.2. Technical results

In this subsection, we shall introduce some preliminary lemmas. Firstly, we give some properties of φu, 
the proof can be found in [13], so we omit it here.

Lemma 2.1. For any u, v ∈ H1(R3, C4), one has

(i) φu : E → H1(R3, R) is continuous and maps bounded sets into bounded sets;
(ii) ‖φu‖H1 ≤ 4πλS− 1

2 |u|3 · |u|2 ≤ Cλ‖u‖2 or ‖φu‖H1 ≤ 4πλS− 1
2 |u|212

5
≤ Cλ‖u‖2;

(iii) Nλ is non-negative and weakly sequentially lower semi-continuous. Moreover, Nλ vanishes only when 
(βu)u = 0 a.e. in R3.

(iv) there hold

|Nλ(u)| ≤ S−1λ2|u|412
5
≤ Cλ2‖u‖4,

|N ′
λ(u)v| ≤ 4πS−1λ2|u|23 · |u|2 · |v|2 ≤ Cλ2‖u‖3‖v‖,

|N ′′
λ (u)[v, v]| ≤ Cλ2‖u‖2‖v‖2,

where

‖v‖H1 =
( ˆ

R3

|∇v|2 + Mv2dx

) 1
2

, v ∈ H1(R3,R),

and

N ′′
λ (u)[v, v] = 2λ2

¨
3 3

e−
√
M |x−y|

|x− y|

(
�[(βu)v](x)�[(βu)v](y)

)
dxdy + λ�

ˆ
3

φu · (βv)vdx.

R ×R R
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In what following, set R+ := [0, ∞) and define for any u ∈ E+ \ {0},

Eu := E− ⊕R+u.

The following Lemma implies that the functional Φε possesses the link structure.

Lemma 2.2. The functional Φε possess the following properties:

(i) There exist r > 0 and ρ > 0, both independent of ε, such that Φε|B+
r

≥ 0 and Φε|S+
r

≥ ρ, where 
B+

r := {u ∈ E+ : ‖u‖ ≤ r}, S+
r := {u ∈ E+ : ‖u‖ = r};

(ii) For any e ∈ E+ \ {0}, there exist R = Re > and C = Ce > 0, both independent of ε, such that, for all 
ε > 0, there hold Φε(u) < 0 for all u ∈ Ee \BR and max Φε(Ee) ≤ C.

Proof. (i) For any u ∈ E+, it follows from (1.6) and Lemma 2.1(iv), for ε > 0 small enough, that

Φε(u) = 1
2‖u‖

2 + 1
2

ˆ

R3

V (εx)|u|2dx−Nλ(u) − Ψε(u)

≥ a− |V |∞
2a ‖u‖2 − Cλ2‖u‖4 − ε|u|22 − Cε|u|pp

≥ a− |V |∞
4a ‖u‖2 − Cλ2‖u‖4 − C‖u‖p,

which, jointly with p > 2, yields (i).
(ii) Take e ∈ E+ \ {0}, by (2.3) and Lemma 2.1(iii), for u = se + v ∈ Ee, one has

Φε(u) = 1
2‖se‖

2 − 1
2‖v‖

2 + 1
2

ˆ

R3

V (εx)|u|2dx−Nλ(u) − Ψε(u)

≤ a + |V |∞
2a s2‖e‖2 − a− |V |∞

2a ‖v‖2 − Qminc3
3 s3|e|33,

and so complete the proof of (ii). �
Recall that a sequence {un} ⊂ E is called to be a (PS)c-sequence for functional Φ ∈ C1(E, R) if 

Φ(un) → c and Φ′(un) → 0, and is called to be (C)c-sequence for Φ if Φ(un) → c and (1 +‖un‖)Φ′(un) → 0. 
It is clear that if {un} is a (PS)c-sequence with {‖un‖} bounded, then it is also a (C)c-sequence. Below we 
are going to study (C)c-sequences for Φε.

Lemma 2.3. For every pair of constants c1, c2 > 0, there exist constants λ1 > 0 and Λ = Λ(c1, c2) > 0 such 
that, for any λ ∈ (0, λ1] and u ∈ E with

|Φε(u)| ≤ c1 and ‖u‖ · ‖Φ′
ε(u)‖ ≤ c2,

we have

‖u‖ ≤ Λ.

Proof. Without loss of generality, we may assume that ‖u‖ ≥ 1. It follows from (1.7) and Lemma 2.1(iii)
that
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c1 + c2 ≥ Φε(u) − 1
2Φ′

ε(u)u = Nλ(u) +
ˆ

R3

P (εx)F̂ (|u|)dx + 1
6

ˆ

R3

Q(εx)|u|3dx ≥ Qmin

6 |u|33 (2.5)

that is,

|u|3 ≤
(6(c1 + c2)

Qmin

) 1
3 := C1. (2.6)

Therefore, (1.6), (2.6) and Lemma 2.1(iv) imply that

c2 ≥ Φ′
ε(u)(u+ − u−) = ‖u‖2 + �

ˆ

R3

V (εx)u · (u+ − u−)dx−N ′
λ(u)(u+ − u−)

−�
ˆ

R3

P (εx)f(|u|)u · (u+ − u−)dx−�
ˆ

R3

Q(εx)|u|u · (u+ − u−)dx

≥ a− |V |∞
a

‖u‖2 − 4πS−1λ2|u|23 · |u|2 · |u+ − u−|2 − ε|u|22 − Cε|u|pp − C2|u|33

≥ a− |V |∞
2a ‖u‖2 − 4πS−1C2

1
a

λ2‖u‖2 − C3|u|pp − C2C
3
1

≥ a− |V |∞
2a ‖u‖2 − 4πS−1C2

1
a

λ2‖u‖2 − C4|u|p−1
3 · |u| 3

4−p
− C2C

3
1

≥ a− |V |∞
2a ‖u‖2 − 4πS−1C2

1
a

λ2‖u‖2 − C5‖u‖ − C2C
3
1

where we have used the fact that 3
4−p ∈ (2, 3) and E ↪→ L

3
4−p (R3, C4). Thus, we obtain that

a− |V |∞
2a ‖u‖2 ≤ C6‖u‖ + 4πS−1C2

1
a

λ2‖u‖2, (2.7)

which implies that there exist λ1 > 0 and Λ = Λ(c1, c2) > 0 such that, for λ ∈ (0, λ1]

‖u‖ ≤ Λ.

This completes the proof. �
Lemma 2.3 has an immediate consequence which implies the boundedness of a (C)c-sequence:

Corollary 2.1. Let {uε
n} is the corresponding (C)cε-sequence for Φε. If there exists C > 0 such that |cε| ≤ C

for all ε, then we have (up to a subsequence)

‖uε
n‖ ≤ Λ,

where Λ found in Lemma 2.3 and the pair c1 = C and c2 = 1.

2.3. Cut-off arguments

The functional Φε contains the non-local term Nλ, which is not convex on E. Thus, Mountain-Pass 
reduction technique could not be applied to functional Φε. In order to overcome this difficulty, we will adopt 
the cut-off the non-local term argument of [13] to find critical point, and eventually shown to be a least 
energy solution of the original system.
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Now fix Λ > 0 to be the constant found in Lemma 2.3 and the pair of the constants c1 = Ce0 and c2 = 1, 
where Ce0 is the constant in Lemma 2.2 with e0 ∈ E+ \ {0} being fixed. Denote T = (Λ + 1)2 and let 
η : [0, ∞) → [0, 1] be a smooth function with η(t) = 1 if 0 ≤ t ≤ T, η(t) = 0 if t ≥ T + 1, max |η′(t)| ≤ 2 and 
|η′′(t)| ≤ 2. Define Γλ : E → R as Γλ(u) = η(‖u‖2)Nλ(u). Then we have Γλ ∈ C2(E, R) and Γλ vanishes 
for all u with ‖u‖ ≥

√
T + 1.

Consider the modified functional

Φ̃ε(u) = 1
2(‖u+‖2 − ‖u−‖2) + 1

2

ˆ

R3

V (εx)|u|2dx− Γλ(u) − Ψε(u).

By definition, Φ̃ε|BT
= Φε, where BT := {u ∈ E : ‖u‖ ≤

√
T}. Clearly, 0 ≤ Γλ(u) ≤ Nλ(u) and for any 

u, v ∈ E

Γ′
λ(u)v = 2η′(‖u‖2)Nλ(u)(u, v) + η(‖u‖2)N ′

λ(u)v.

Similar to Lemma 2.3, we have the following boundedness Lemma (with Λ being taken in Lemma 2.3
and large if necessary).

Lemma 2.4. There exists λ2 > 0 such that, for each λ ∈ (0, λ2], if u ∈ E satisfies

0 ≤ Φ̃ε(u) ≤ Ce0 and ‖u‖ · ‖Φ̃′
ε(u)‖ ≤ 1,

then we have ‖u‖ ≤ Λ + 1, and consequently Φ̃ε(u) = Φε(u).

Proof. We repeat the arguments of Lemma 2.3. If ‖u‖2 ≥ T +1 then Γλ(u) = 0. So, as proved in Lemma 2.3, 
we obtain that ‖u‖ ≤ C̃ for some C̃ > 0 and get ‖u‖ ≤ C̃ ≤ Λ + 1, a contradiction. Thus we assume that 
‖u‖2 ≤ T + 1. Then, using Lemma 2.1(iv), there is λ2 > 0 (such as λ2 = 1

(T+1)
3
2
) such that, for any 

λ ∈ (0, λ2]

|η′(‖u‖2)‖u‖2Nλ(u)| ≤ r0λ
2‖u‖6 ≤ r0λ

2(T + 1)3 ≤ r0, (2.8)

where r0 > 0 independent of T . Similar to (2.5), we get

Ce0 + 1 ≥ (η(‖u‖2) + η′(‖u‖2)‖u‖2)Nλ(u) +
ˆ

R3

P (εx)F̂ (|u|)dx + 1
6

ˆ

R3

Q(εx)|u|3dx ≥ Qmin

6 |u|33

which, jointly with (2.8), yields

|u|33 ≤ 6(Ce0 + 1 + r0)
Qmin

:= C̃1.

Similar to (2.7), for any λ ∈ (0, λ2], we get

a− |V |∞
2a ‖u‖2 ≤ 2η′(‖u‖2)(u, u+ − u−)Nλ(u) + η(‖u‖2)N ′

λ(u)(u+ − u−) + C‖u‖ + CC̃1

≤ Cλ2‖u‖6 + Cλ4‖u‖4 + CC̃1

≤ R0

which implies that
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‖u‖ ≤
√

2aR0

a− |V |∞
≤ Λ + 1,

where R0 > 0 is a constant independent of T . The proof is complete. �
Under Lemma 2.4, to prove our main results, it suffices to study Φ̃ε and get its critical points with critical 

value in [0, Ce0 ]. This will be done via a series of arguments. Firstly, a similar argument of Lemma 2.2 yields

Lemma 2.5. Φ̃ε possesses the linking structure, and the constants found in Lemma 2.2 are independent of ε.

Define the following minimax value (see [26,30])

cε := inf
u∈E+\{0}

max
w∈Eu

Φ̃ε(w).

As a consequence of Lemma 2.4 and Lemma 2.5, one has

Lemma 2.6. ρ ≤ cε ≤ Ce0 . Moreover, if cε is critical point values for Φ̃ε, then it is also critical values for 
Φε.

In order to get more information on cε, motivated by [1], we consider, for a fixed u ∈ E+, the map 
φu : E− → R defined by

φu(v) = Φ̃ε(u + v).

Observe that, for any v, w ∈ E−,

φ′′
u(v)[w,w] = −‖w‖2 +

ˆ

R3

V (εx)|w|2dx− Γ′′
λ(u + v)[w,w] − Ψ′′

ε (u + v)[w,w]

≤ −a− |V |∞
a

‖w‖2 − Γ′′
λ(u + v)[w,w] − Ψ′′

ε (u + v)[w,w],

where

Ψ′′
ε (u + v)[w,w] =

ˆ

R3

P (εx)
[(

f ′(u + v)
|u + v| �(u + v, w)

)2 + f(|u + v|)|w|2
]
dx

+
ˆ

R3

Q(εx)
[(�(u + v, w)

)2
|u + v| + |u + v||w|2

]
dx > 0

and

Γ′′
λ(u + v)[w,w] = (4η′′(‖u + v‖2)|(u + v, w)|2 + 2η′(‖u + v‖2)‖w‖2)Nλ(u + v)

+ 4η′(‖u + v‖2)(u + v, w)N ′
λ(u + v)w + η(‖u + v‖2)N ′′

λ (u + v)[w,w].

Combining Lemma 2.1(iv) yields

|Γ′′
λ(u + v)[w,w]| ≤ Cλ2‖w‖2 ≤ a− |V |∞

2a ‖w‖2

for λ ∈ (0, λ3], where λ3 is suitably chosen. Therefore, for each λ ∈ (0, λ3], we deduce
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φ′′
u(v)[w,w] ≤ −a− |V |∞

2a ‖w‖2.

Additionally, we find

φu(v) ≤ a− |V |∞
2a ‖u‖2 − a + |V |∞

2a ‖v‖2.

Therefore, there is a unique hε : E+ → E− such that

φu(hε(u)) = max
v∈E−

φu(v).

It is clear that, for all v ∈ E−

0 = φ′
u(hε(u))v = −(hε(u), v) + �

ˆ

R3

V (εx)(u + hε(u))vdx− Γ′
λ(u + hε(u))v − Ψ′

ε(u + hε(u))v

and

v �= hε(u) ⇔ Φ̃ε(u + v) < Φ̃ε(u + hε(u)).

Define Iε : E+ → R by

Iε(u) = Φ̃ε(u + hε(u))

and let

Nε := {u ∈ E+ \ {0} : I ′ε(u)u = 0}.

By a similar argument (see [1,11,13]), one has

Lemma 2.7. For any u ∈ E+ \ {0}, there is a unique tε = tε(u) > 0 such that tεu ∈ Nε and tε ≤ Tu for 
some constant Tu > 0 (independent of ε). Moreover, cε = inf

u∈Nε

Iε(u).

Next we estimate the regularities of critical points of Φ̃ε. Let Hε := {u ∈ E : Φ̃′
ε(u) = 0} be the critical 

set of Φ̃ε. It is easy to see that if Hε \ {0} �= ∅ then

cε = inf
u∈Hε\{0}

Φ̃ε(u)

(see an argument of [11]). Using the same argument as in [21] or [12, Lemma 3.19], one obtains the following 
Lemma.

Lemma 2.8. Let u be a weak solution to the system (1.5). Then u ∈ ∩q≥2W
1,q
loc ∩ L∞(R3, C4).

2.4. The autonomous problem

In order to prove our main results, we will make use of the autonomous problem. Precisely, for any 
μ ∈ (−a, 0], ν ∈ [P∞, Pmax], τ ∈ [Qmin, Qmax], we consider the following constant coefficient system

{
iα · ∇u− aβu + μu− λφβu = νf(|u|)u + τ |u|u,
−Δφ + Mφ = 4πλ(βu) · u.

(2.9)
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As before, we consider the modified functional

J̃μντ (u) = 1
2(‖u+‖2 − ‖u−‖2) + μ

2

ˆ

R3

|u|2dx− Γλ(u) −Hντ (u),

where

Hντ (u) = ν

ˆ

R3

F (|u|)dx + τ

3

ˆ

R3

|u|3dx.

And define

Jμντ : E+ → E−, J̃μντ (u + Jμντ (u)) = max
v∈E−

J̃μντ (u + v),

Jμντ : E+ → R, Jμντ (u) = J̃μντ (u + Jμντ (u)),

Mμντ := {u ∈ E+ \ {0} : J ′
μντ (u)u = 0}.

Similar to Lemma 2.7, for each u ∈ E+ \ {0}, there is a unique t = t(u) > 0 such that tu ∈ Mμντ and

γμντ = inf
u∈Mμντ

Jμντ (u) = inf
e∈E+\{0}

max
u∈Ee

J̃μντ (u).

Lemma 2.9. For any μ ∈ (−a, 0], ν ∈ [P∞, Pmax], τ ∈ [Qmin, Qmax]. If 2 < σ ≤ 12
5 with α0 ≤ Rσ or 

12
5 < σ < 3 with α1 ≤ Rσ. Then there holds

0 < γμντ <
S

3
2

6τ2

(a + μ

a

)3
.

Moreover, system (2.9) has a least energy solution u such that J̃μντ (u) = γμντ .

Proof. Note that, by the min-max scheme, we deduce

γμντ < γμν(σ) (2.10)

where γμν(σ) is the least energy of the following equation

iα · ∇u− aβu + μu = c0ν|u|σ−2u.

(2.10), jointly with [10, Lemma 4.6], that is

γμν(σ) ≤ (a + μ)
2(3−σ)
σ−2 (c0ν)

−2
σ−2 γ

we get

γμντ < (a + μ)
2(3−σ)
σ−2 (c0ν)

−2
σ−2 γ ≤ S

3
2

6τ2 (a + μ

a
)3.

Next, we show γμντ is attained. Let {un} be a (C)γμντ
-sequence. By the statements in Lemma 2.4, {un}

is bounded in E. Next, we claim that there exists a sequence {yn} ⊂ R3 and R, δ > 0 such that
ˆ

|un|2dx ≥ δ, n ∈ N. (2.11)

R3
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Otherwise, by Lion’s concentration principle [23], one has

un → 0 in Lr(R3,C4) for 2 < r < 3.

Thus, it follows from (1.6) that
ˆ

R3

F (|un|)dx → 0,
ˆ

R3

f(|un|)|un|2dx → 0 as n → ∞. (2.12)

Moreover, by Lemma 2.1(iv), we can obtain

Γλ(un) ≤ S−1λ2|un|412
5
→ 0 as n → ∞. (2.13)

Note that

J̃μντ (un) = J̃μντ (un) − 1
2 J̃

′
μντ (un)un

= Nλ(un) + ν

ˆ

R3

F̂ (|un|)dx + τ

6

ˆ

R3

|un|3dx.

Therefore, (2.12)-(2.13) imply that
ˆ

R3

|un|3dx = 6γμντ
τ

+ on(1). (2.14)

Similarly, we also have

‖un‖2 + �
ˆ

R3

μun(u+
n − u−

n )dx = �
ˆ

R3

τ |un|un(u+
n − u−

n )dx + on(1).

This, jointly with the fact S 1
2 |u|23 ≤ ‖u‖2 (see [2]), we get

a + μ

a
‖un‖2 ≤ τ

2
3 |un|3|u+

n − u−
n |3

(ˆ
R3

|un|3dx
) 1

3 + on(1)

≤ τ
2
3S− 1

2 ‖un‖‖u+
n − u−

n ‖
(ˆ
R3

|un|3dx
) 1

3 + on(1)

≤ τ
2
3S− 1

2 ‖un‖2(6γμντ )
1
3 + on(1),

which implies

γμντ ≥ S
3
2

6τ2 (a + μ

a
)3

a contradiction. Let vn(x) = un(x + yn), then {vn} is bounded in E by the boundedness of {un} and, up 
to a subsequence, we assume that vn ⇀ v in E. By (2.11), we see that v �= 0 and it is easy to check that 
J̃ ′
γμντ

(v) = 0, J̃γμντ
(v) = γμντ . This completes the proof. �

Lemma 2.10. Let u ∈ Mμντ be such that Jμντ (u) = γμντ . Then

max J̃μντ (w) = Jμντ (u).

w∈Eu
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Proof. Clearly, since u + Jb(u) ∈ Eu,

Jμντ (u) = J̃μντ (u + Jμντ (u)) ≤ max
w∈Eu

J̃μντ (u).

Moreover, for any w = v + su ∈ Eu,

max
w∈Eu

J̃μντ (w) ≤ max
s≥0

J̃μντ (su + J (su)) = max
s≥0

Jμντ (su) = Jμντ (u).

Therefore, max
w∈Eu

J̃μντ (w) = Jμντ (u). �
The following Lemma describes a comparison between the least energy values for different parameters 

μ, ν and τ , which will plays an important role in proving the existence result in Section 3.

Lemma 2.11. Let μj ∈ (−a, 0], νj ∈ [P∞, Pmax] and τj ∈ [Qmin, Qmax], j = 1, 2, with μ1 ≤ μ2, ν1 ≥ ν2 and 
τ1 ≥ τ2. Then γμ1ν1τ1 ≤ γμ2ν2τ2 . In particular, if one of inequalities is strict, then γμ1ν1τ1 < γμ2ν2τ2 .

Proof. Let u be a least energy solution of J̃μ2ν2τ2 and set e = u+. Then

γμ2ν2τ2 = J̃μ2ν2τ2(u) = max
w∈Ee

J̃μ2ν2τ2(w).

Let u0 ∈ Ee be such that J̃μ1ν1τ1(u0) = max
w∈Ee

J̃μ1ν1τ1(w). One has

γμ2ν2τ2 = J̃μ2ν2τ2(u) ≥ J̃μ2ν2τ2(u0)

= J̃μ1ν1τ1(u0) + μ2 − μ1

2

ˆ

R3

|u0|2dx + (ν1 − ν2)
ˆ

R3

F (|u0|)dx + τ1 − τ2
3

ˆ

R3

|u0|3dx

≥ γμ1ν1τ1 .

Thus, we complete the proof. �
3. Existence of least energy solutions

In the section, we will prove the existence of least energy solutions to system (2.4). Observing that given 
any xP ∈ CP , we set Ṽ (x) = V (x + xP), P̃ (x) = P (x + xP) and Q̃(x) = Q(x + xP). Clearly, if ũ(x) is a 
solution of

{
iα · ∇ũ− aβũ + Ṽ (εx)ũ− λφβũ = P̃ (εx)f(|ũ|)ũ + Q̃(εx)|ũ|ũ,
−Δφ + Mφ = 4πλ(βũ) · ũ,

then u(x) = ũ(x − xP) solves (2.4). Thus, without loss of generality, we may assume that

xP = 0 ∈ CP ,

so

Q(0) = Qmax, P (0) = PQ and v0 := V (0) ≤ V (x) for all |x| ≥ R. (3.1)

Lemma 3.1. lim sup cε ≤ γv0PQQmax .

ε→0
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Proof. Denote V μ
ε (x) = max{μ, V (εx)}, P ν

ε (x) = min{ν, P (εx)} and Qτ
ε (x) = min{τ, Q(εx)}, where μ ∈

(−a, 0] and ν, τ are two positive constants. Define the auxiliary functional as follows:

Φ̃μντ
ε (u) :=1

2‖u
+‖2 − 1

2‖u
−‖2 + 1

2

ˆ

R3

V μ
ε (x)|u|2dx− Γλ(u)

−
ˆ

R3

P ν
ε (x)F (|u|)dx− 1

3

ˆ

R3

Qτ
ε (x)|u|3dx,

which implies that J̃μντ (u) ≤ Φ̃μντ
ε (u), and thus γμντ ≤ cμντε , where cμντε is the least energy of Φ̃μντ

ε . By 
definition, one has V Vmin

ε (x) → V (0) = v0, PPmax
ε (x) → P (0) = PQ, QQmax

ε (x) → Q(0) = Qmax on bounded 
sets of x as ε → 0. Set V 0

ε (x) = V (εx) − v0, P 0
ε (x) = PQ − P (εx) and Q0

ε(x) = Qmax −Q(εx). Then

Φ̃ε(u) = J̃v0PQQmax(u) + 1
2

ˆ

R3

V 0
ε (x)|u|2dx +

ˆ

R3

P 0
ε (x)F (|u|)dx + 1

3

ˆ

R3

Q0
ε(x)|u|3dx. (3.2)

Let u be a least energy solution of J̃v0PQQmax by Lemma 2.9, that is, J̃v0PQQmax(u) = γv0PQQmax and let 
e = u+. Clearly, e ∈ Mv0PQQmax , Jv0PQQmax(e) = u− and Jv0PQQmax(e) = γv0PQQmax . There is a unique 
tε > 0 such that tεe ∈ Nε and one has

cε ≤ Iε(tεe). (3.3)

By Lemma 2.7, tε is bounded. Hence, without loss of generality we can assume tε → t0 as ε → 0.
Let �(t) = Φ̃ε(wε + tvε), one has �(1) = Φ̃ε(uε), �(0) = Φ̃ε(wε) and �′(0) = 0, where

uε = tεe + Jv0PQQmax(tεe), wε = tεe + hε(tεe), vε = uε − wε.

Thus, �(1) − �(0) =
´ 1
0 (1 − t)�′′(t)dt. This implies that

Φ̃ε(wε) − Φ̃ε(uε) = −
1ˆ

0

(1 − t)Φ̃′′
ε (wε + tvε)[vε, vε]dt

= 1
2‖vε‖

2 − 1
2

ˆ

R3

V (εx)|vε|2dx +
1ˆ

0

(1 − t)Γ′′
λ(wε + tvε)[vε, vε]dt

+
1ˆ

0

(1 − t)Ψ′′
ε (wε + tvε)[vε, vε]dt.

(3.4)

Similarly,

J̃v0PQQmax(wε) − J̃v0PQQmax(uε) = −1
2‖vε‖

2 + v0

2

ˆ

R3

|vε|2dx

−
1ˆ

0

(1 − t)Γ′′
λ(uε − tvε)[vε, vε]dt−

1ˆ

0

(1 − t)H ′′
PQQmax

(uε − tvε)[vε, vε]dt.

(3.5)

Thus, (3.4) and (3.5) imply that
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Φ̃ε(wε) − Φ̃ε(uε) −
(
J̃v0PQQmax(wε) − J̃v0PQQmax(uε)

)

= ‖vε‖2 − 1
2

ˆ

R3

(V (εx) + v0)|uε|2dx +
1ˆ

0

Γ′′
λ(wε + tvε)[vε, vε]dt

+
1ˆ

0

tH ′′
PQQmax

(wε + tvε)[vε, vε]dt +
1ˆ

0

(1 − t)Ψ′′
ε (wε + tvε)[vε, vε]dt.

(3.6)

On the other hand,

Φ̃ε(wε) − Φ̃ε(uε) = J̃v0PQQmax(wε) − J̃v0PQQmax(uε) + 1
2

ˆ

R3

V 0
ε (x)(|wε|2 − |uε|2)dx

+
ˆ

R3

P 0
ε (x)(F (|wε|) − F (|uε|))dx + 1

3

ˆ

R3

Q0
ε(x)(|wε|3 − |uε|3)dx.

(3.7)

By a direct computation, we deduce

ˆ

R3

V 0
ε (x)(|wε|2 − |uε|2)dx =

ˆ

R3

V 0
ε (x)|vε|2dx− 2�

ˆ

R3

V 0
ε (x)uε · vεdx (3.8)

and

ˆ

R3

P 0
ε (x)(F (|wε|) − F (|uε|))dx + 1

3

ˆ

R3

Q0
ε(x)(|wε|3 − |uε|3)dx

= −�
[ ˆ
R3

P 0
ε (x)f(|uε|)uε · vεdx +

ˆ

R3

Q0
ε(x)|uε|uε · vεdx

]

+
1ˆ

0

(1 − t)H ′′
PQQmax

(uε − tvε)[vε, vε]dt−
1ˆ

0

(1 − t)Ψ′′
ε (uε − tvε)[vε, vε]dt.

(3.9)

It follows from (3.6)-(3.9) that

‖vε‖2 −
ˆ

R3

V (εx)|vε|2dx +
1ˆ

0

Γ′′
λ(wε + tvε)[vε, vε]dt +

1ˆ

0

Ψ′′
ε (wε + tvε)[vε, vε]dt

= −�
[ˆ
R3

V 0
ε (x)uε · vεdx +

ˆ

R3

P 0
ε (x)f(|uε|)uε · vεdx +

ˆ

R3

Q0
ε(x)|uε|uε · vεdx

]
.

Note that

Ψ′′
ε (wε + tvε)[vε, vε] ≥ 0 and |Γ′′

λ(wε + tvε)[vε, vε]| ≤
a− |V |∞

2a ‖vε‖2

we deduce that
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a− |V |∞
2a ‖vε‖2 ≤ −�

[ˆ
R3

V 0
ε (x)uε · vεdx +

ˆ

R3

P 0
ε (x)f(|uε|)uε · vεdx +

ˆ

R3

Q0
ε(x)|uε|uε · vεdx

]

≤
ˆ

R3

|V 0
ε (x)||uε| · |vε|dx +

ˆ

R3

|P 0
ε (x)|f(|uε|)|uε| · |vε|dx +

ˆ

R3

|Q0
ε(x)||uε|2 · |vε|dx

≤ C1

ˆ

R3

(
|V 0

ε (x)| + |P 0
ε (x)|

)
|uε| · |vε|dx + C2

ˆ

R3

(
|P 0

ε (x)| + |Q0
ε(x)|

)
|uε|2 · |vε|dx

≤ C3

(ˆ

R3

(
|V 0

ε (x)| + |P 0
ε (x)|

)2|uε|2dx
) 1

2

|vε|2 + C4

( ˆ

R3

(
|P 0

ε (x)| + |Q0
ε(x)|

) 3
2 |uε|3dx

) 2
3

|vε|3.

(3.10)

Since tε → t0 and e is exponentially decaying, we have for q = 2, 3,

lim sup
r→∞

ˆ

|x|>r

|uε|qdx = 0,

which implies that
ˆ

R3

(
|V 0

ε (x)| + |P 0
ε (x)|

)2|uε|2dx =
( ˆ

|x|≤r

+
ˆ

|x|>r

)(
|V 0

ε (x)| + |P 0
ε (x)|

)2|uε|2dx

≤
ˆ

|x|≤r

(
|V 0

ε (x)| + |P 0
ε (x)|

)2|uε|2dx + C

ˆ

|x|>r

|uε|2dx

= oε(1).

Similarly,
ˆ

R3

(
|P 0

ε (x)| + |Q0
ε(x)|

) 3
2 |uε|3dx = oε(1).

Thus by (3.10) one has ‖vε‖2 → 0, that is, hε(tεe) → Jv0PQQmax(t0e). Consequently,
ˆ

R3

V 0
ε (x)|wε|2dx → 0 and

ˆ

R3

P 0
ε (x)F (|wε|)dx + 1

3

ˆ

R3

Q0
ε(x)|wε|3dx → 0

as ε → 0. This, together with (3.2), shows

Φ̃ε(wε) = J̃v0PQQmax(wε) + oε(1) = J̃v0PQQmax(uε) + oε(1),

that is

Iε(tεe) = Jv0PQQmax(t0e) + oε(1)

as ε → 0. Then, since

Jv0PQQmax(t0e) ≤ max
v∈Ee

J̃v0PQQmax(v) = Jv0PQQmax(e) = γv0PQQmax ,

we obtain by (3.3)
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lim sup
ε→0

cε ≤ lim sup
ε→0

Iε(tεe) = Jv0PQQmax(t0e) ≤ γv0PQQmax .

This completes the proof. �
Next we only truncate the functional V (x) and P (x) with μ = v0 and ν ∈ (P∞, PQ) and consider the 

truncated energy functional

˜̃Φv0ν
ε (u) = 1

2‖u
+‖2 − 1

2‖u
−‖2 + 1

2

ˆ

R3

V v0
ε (x)|u|2dx− Γλ(u) −

ˆ

R3

P ν
ε (x)F (|u|)dx− 1

3

ˆ

R3

Qε(εx)|u|3dx.

As before define correspondingly h̃v0ν
ε : E+ → E−, Ĩv0ν

ε : E+ → R, Ñ v0ν
ε , ̃cv0ν

ε and so on.
We have an important lower bound for the least energy c̃v0ν

ε .

Lemma 3.2. c̃v0ν
ε ≥ γv0νQmax .

Proof. Since V v0
ε (x) ≥ v0, P ν

ε (x) ≤ ν, Q(εx) ≤ Qmax, from the characterization of the value γv0νQmax , we 
know that

inf
w∈E+\{0}

max
u∈Ê(w)

˜̃Φv0ν
ε (u) ≥ inf

w∈E+\{0}
max

u∈Ê(w)
J̃v0νQmax(u)

which gives

c̃v0ν
ε ≥ γv0νQmax .

This completes the proof. �
Lemma 3.3. cε is attained at some non-trivial uε for small ε > 0.

Proof. Let {wn} ⊂ Nε be a minimization sequence: Iε(wn) → cε. By the Ekeland variational principle we 
can assume that {wn} is a (PS)cε-sequence for Iε on E+. Then un = wn + hε(wn) is a (PS)cε-sequence 
for Φ̃ε on E. It is clear that {un} is bounded, hence is a (C)cε-sequence. Assume that un ⇀ uε in E and 
then Φ̃′(uε) = 0. If uε �= 0, it is easy to check that Φ̃ε(uε) = cε. Next we show that uε �= 0 for small ε > 0. 
Assume by contradiction that there exists a sequence εj → 0 such that uεj = 0, then un ⇀ 0 in E, and 
thus un → 0 in Lr

loc(R3, C4) for r ∈ [1, 3) and un(x) → 0 a.e. in x ∈ R3.
By (A1), choose ν ∈ (P∞, PQ) and consider the auxiliary functional ˜̃Φv0ν

εj , where v0 is defined in (3.1). 
Let tn > 0 be such that tnwn ∈ Ñ v0ν

εj . Then {tn} is bounded and one may assume tn → t0 for some t0 ≥ 0
as n → ∞. Remark that h̃v0ν

εj (tnwn) ⇀ 0 in E and h̃v0ν
εj (tnwn) → 0 in Lq

loc(R3, C4) for q ∈ [1, 3). By (A1)
again, the set Oε := {x ∈ R3 : V (εx) < v0} is bounded. Thus,
ˆ

R3

(
V v0
εj (x) − V (εjx)

)
|tnwn + h̃v0ν

εj (tnwn)|2dx =
ˆ

Oεj

(
v0 − V (εjx)

)
|tnwn + h̃v0ν

εj (tnwn)|2dx = on(1). (3.11)

Similarly, since the set {x ∈ R3 : P (εx) ≥ ν} is bounded and f is subcritical growth, we have
ˆ

R3

(
P (εjx) − P ν

εj (x)
)
F (|tnwn + h̃v0ν

εj (tnwn)|)dx = on(1). (3.12)

Therefore, by (3.11)-(3.12) and Φ̃εj (tnwn + hv0ν
ε (tnwn)) ≤ Iεj (wn), one has

j
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c̃v0ν
εj ≤ Ĩv0ν

εj (tnwn) = ˜̃Φv0ν
εj (tnwn + h̃v0ν

εj (tnwn))

= Φ̃εj (tnwn + h̃v0ν
εj (tnwn)) + 1

2

ˆ

R3

(
V v0
εj (x) − V (εjx)

)
|tnwn + h̃v0ν

εj (tnwn)|2dx

+
ˆ

R3

(
P (εjx) − P ν

εj (x)
)
F (|twn

wn + h̃v0ν
εj (tnwn)|)dx

≤ Iεj (wn) + 1
2

ˆ

R3

(
V v0
εj (x) − V (εjx)

)
|tnwn + h̃v0ν

εj (tnwn)|2dx

+
ˆ

R3

(
P (εjx) − P ν

εj (x)
)
F (|tnwn + h̃v0ν

εj (tnwn)|)dx

= Iεj (wn) + on(1),

which implies that c̃v0ν
εj ≤ cεj as n → ∞. Note that c̃v0ν

εj ≥ γv0νQmax in view of Lemma 3.2. Hence, we get

γv0νQmax ≤ cεj .

In virtue of Lemma 3.1, letting εj → 0 yields

γv0νQmax ≤ γv0PQQmax .

Applying Lemma 2.11 and the fact that ν < PQ yield a contradiction. Therefore, cε is attained at some uε

for small ε > 0. �
4. Concentration and convergence of least energy solutions

This section is devoted to the concentration behavior of the least energy solutions uε as ε → 0. We will 
prove the following results.

Theorem 4.1. Let uε be a least energy solution of the system (2.4) given by Lemma 3.3, then for λ > 0 small, 
|uε| possesses a maximum point yε such that, up to a subsequence, εyε → x0 as ε → 0, lim

ε→0
dist(εyε, HP) = 0

and vε(x) := uε(x + yε) converges in H1(R3, C4) to a least energy solution of

{
iα · ∇u− aβu + V (x0)u− λφβu = P (x0)f(|u|)u + Q(x0)|u|u,
−Δφ + Mφ = 4πλ(βu) · u.

In particular, if V ∩ P ∩ Q �= ∅, then lim
ε→0

dist(εyε, V ∩ P ∩ Q) = 0, and up to a subsequence, vε converges 
in H1(R3, C4) to a least energy solution of

{
iα · ∇u− aβu + Vminu− λφβu = Pmaxf(|u|)u + Qmax|u|u,
−Δφ + Mφ = 4πλ(βu) · u.

Lemma 4.1. There exists ε∗ > 0 such that, for all ε ∈ (0, ε∗), there exist {y′ε} ⊂ R3 and R′, δ′ > 0 such that

ˆ
′

|uε|2dx ≥ δ′.
BR′ (yε)
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Proof. Assume by contradiction that there exists a sequence εj → 0 as j → ∞, such that for any R1 > 0,

lim
j→∞

sup
y∈R3

ˆ

BR1 (y)

|uεj |2dx = 0.

Thus, by Lion’s concentration principle [23, Lemma1.1], we have

uεj → 0 in Lr(R3,C4) for 2 < r < 3,

which implies, from the boundedness of the potential function P and (1.6), that
ˆ

R3

P ν
εj (x)F (|uεj |)dx → 0,

ˆ

R3

P ν
εj (x)f(|uεj |)|uεj |2dx → 0 as j → ∞, (4.1)

for any ν ∈ (P∞, PQ), and

Γλ(uεj ) ≤ Cλ2|uεj |4125 → 0 as j → ∞. (4.2)

It is not difficult to check that

˜̃Φv0ν
εj (uεj ) = cεj + oj(1) and ( ˜̃Φv0ν

εj )′(uεj )uεj = oj(1). (4.3)

Note that

˜̃Φv0ν
εj (uεj ) = ˜̃Φv0ν

εj (uεj ) −
1
2( ˜̃Φv0ν

εj )′(uεj )uεj + oj(1)

= Γλ(uεj ) +
ˆ

R3

P ν
εj (x)F̂ (|uεj |)dx + 1

6

ˆ

R3

Q(εjx)|uεj |3dx + oj(1).

Thus, by (4.1)-(4.3), one has
ˆ

R3

Q(εjx)|uεj |3dx = 6cεj + oj(1).

Moreover, we also have

‖uεj‖2 + �
ˆ

R3

V v0
εj (x)uεj (u+

εj − u−
εj )dx = �

ˆ

R3

Q(εjx)|uεj |uεj (u+
εj − u−

εj )dx + oj(1).

a + v0

a
‖uεj‖2 ≤ Q

2
3max|uεj |3 · |u+

εj − u−
εj |3 ·

(ˆ
R3

Q(εjx)|uεj |3dx
) 1

3 + oj(1)

≤ Q
2
3maxS

− 1
2 ‖uεj‖ · ‖u+

εj − u−
εj‖ ·

(ˆ
R3

Q(εjx)|uεj |3dx
) 1

3 + oj(1)

≤ Q
2
3maxS

− 1
2 ‖uεj‖2(6cεj )

1
3 + oj(1),

which implies

lim inf cεj ≥ S
3
2

2 (a + v0 )3. (4.4)

j→∞ 6Qmax a
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Moreover, it follows from Lemma 2.11 and [10, Lemma 4.6] again that

γv0PQQmax < γv0P∞Qmax < γv0P∞(σ) ≤ (a + v0)
2(3−σ)
σ−2 (c0P∞)

−2
σ−2 γ ≤ S

3
2

6Q2
max

(a + v0

a
)3

which is a contradiction with Lemma 3.1 and (4.4). �
Let {yε} ⊂ R3 is maximum point of |uε|, that is

|uε(yε)| = max
x∈R3

|uε(x)|, ε ∈ (0, ε∗).

We claim that there exists θ0 > 0 (independent of ε) such that

|uε(yε)| ≥ θ0, uniformly for all ε ∈ (0, ε∗).

Assume by contradiction that |uε(yε)| → 0 as ε → 0. We deduce from Lemma 4.1 that

0 < δ′ ≤
ˆ

BR′ (y′
ε)

|uε|2dx ≤ C|uε(yε)|2 → 0 as ε → 0.

This is a contradiction. So it follows from the above claim that there exists R > R′ > 0 and δ > 0 such that
ˆ

BR(yε)

|uε|2dx ≥ δ.

Set vε(x) := uε(x + yε), then vε satisfies

iα · ∇vε − aβvε + V̂ε(x)vε − λφvεβvε = P̂ε(x)f(|vε|)vε + Q̂ε(x)|vε|vε, (4.5)

with energy

Eε(vε) = 1
2‖v

+
ε ‖2 − 1

2‖v
−
ε ‖2 + 1

2

ˆ

R3

V̂ε(x)|vε|2dx− Γλ(vε)

−
ˆ

R3

P̂ε(x)F (|vε|)dx− 1
3

ˆ

R3

Q̂ε(x)|vε|3dx

= Eε(vε) −
1
2E

′
ε(vε)vε

= Γλ(vε) +
ˆ

R3

P̂ε(x)F̂ (|vε|)dx + 1
6

ˆ

R3

Q̂ε(x)|vε|3dx

= Φ̃ε(uε) −
1
2Φ̃′

ε(uε)uε = Φ̃ε(uε) = cε,

where V̂ε(x) = V (ε(x + yε)), P̂ε(x) = P (ε(x + yε)) and Q̂ε(x) = Q(ε(x + yε)). We may assume vε ⇀ u in E, 
and vε → u in Lr

loc(R3, C4) for r ∈ [1, 3) with u �= 0.
By the boundedness of V, P and Q, without loss of generality, we may assume that V (εyε) → V0, P (εyε) →

P0 and Q(εyε) → Q0 as ε → 0.
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Lemma 4.2. u is a least energy solution of

iα · ∇u− aβu + V0u− λφuβu = P0f(|u|)u + Q0|u|u. (4.6)

Proof. By (4.5), for any ϕ ∈ C∞
0 (R3, C4), there holds that

0 = lim
ε→0

�
ˆ

R3

(
iα · ∇vε − aβvε + V̂ε(x)vε − λφvεβvε − P̂ε(x)f(|vε|)vε − Q̂ε(x)|vε|vε

)
· ϕdx. (4.7)

Since V, P, Q are all continuous and bounded, one has

�
ˆ

R3

V̂ε(x)vε · ϕdx → �
ˆ

R3

V0u · ϕdx, �
ˆ

R3

P̂ε(x)f(|vε|)vε · ϕdx → �
ˆ

R3

P0f(|u|)u · ϕdx,

and

�
ˆ

R3

Q̂ε(x)|vε|vε · ϕdx → �
ˆ

R3

Q0|u|u · ϕdx,

which combined with (4.7) imply that

iα · ∇u− aβu + V0u− λφuβu = P0f(|u|)u + Q0|u|u,

this is, u solves (4.6) with energy

J̃V0P0Q0(u) = 1
2‖u

+‖2 − 1
2‖u

−‖2 + 1
2V0

ˆ

R3

|u|2dx− Γλ(u) − P0

ˆ

R3

F (|u|)dx− Q0

3

ˆ

R3

|u|3dx

= J̃V0P0Q0(u) − 1
2 J̃

′
V0P0Q0

(u)u

= Γλ(u) + P0

ˆ

R3

F̂ (|u|)dx + Q0

6

ˆ

R3

|u|3dx

≥ γV0P0Q0 .

By Fatou’s Lemma and the proof of Lemma 3.1, we have

γV0P0Q0 ≤ Γλ(u) + P0

ˆ

R3

F̂ (|u|)dx + Q0

6

ˆ

R3

|u|3dx

≤ lim inf
ε→0

[
Γλ(vε) +

ˆ

R3

P̂ε(x)F̂ (|vε|)dx + 1
6

ˆ

R3

Q̂ε(x)|vε|3dx
]

= lim inf
ε→0

Eε(vε)

≤ lim sup
ε→0

Φ̃ε(uε)

≤ γV0P0Q0 .

(4.8)

Consequently,

lim Eε(vε) = lim cε = J̃V0P0Q0(u) = γV0P0Q0 . (4.9)

ε→0 ε→0
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Thus, u is a least energy solution of the system (4.6). �
Lemma 4.3. {εyε} is bounded.

Proof. Suppose to the contrary that, up to a subsequence, |εyε| → ∞. Since P (0) = PQ and v0 = V (0) ≤
V (x) for all |x| ≥ R, we deduce that P0 > PQ and v0 ≤ V0. So it follows from Lemma 2.11 that γV0P0Q0 >

γv0PQQmax .
However, by (4.6) and Lemma 3.1, cε → γV0P0Q0 ≤ γv0PQQmax , which is a contradiction. Therefore, {εyε}

is bounded. �
After extracting a subsequence, we may assume εyε → x0 as ε → 0, then V0 = V (x0), P0 = P (x0) and 

Q0 = Q(x0).

Lemma 4.4. lim
ε→0

dist(εyε, HP) = 0.

Proof. It suffices to show that x0 ∈ HP . We argue by contradiction, if x0 /∈ HP , then it is easy to check 
that γV (x0)P (x0)Q(x0) > γv0PQQmax by (A1) and Lemma 2.11. Therefore, by Lemma 3.1, we have

lim
ε→0

cε = γV (x0)P (x0)Q(x0) > γv0PQQmax ≥ lim
ε→0

cε,

which is absurd. �
Lemma 4.5. vε → u in H1(R3, C4).

Proof. By (4.8), it is easy to check that

lim
ε→0

ˆ

R3

Q̂ε(x)|vε|3dx = Q0

ˆ

R3

|u|3dx. (4.10)

By the decay of u and Q̂ε(x) → Q0 on bounded sets of x as ε → 0, one has

lim
ε→0

ˆ

R3

Q̂ε(x)|u|3dx = Q0

ˆ

R3

|u|3dx. (4.11)

It follows from (4.10)-(4.11) and the Brezis-Lieb lemma that vε → u in L3(R3, C4). Hence, using the 
interpolation inequality and the boundedness of vε in E yields vε → u in Lt(R3, C4) for t ∈ (2, 3]. Denote 
zε = vε − u. The scalar product of (4.5) and (4.6) with zε, respectively, we get

(vε, zε) + �
ˆ

R3

V̂ε(x)vε · zεdx = oε(1), (4.12)

and

(u, zε) + �V0

ˆ

R3

u · zεdx = oε(1). (4.13)

Note that

lim
ε→0

�
(ˆ

V̂ε(x)u · zεdx− V0

ˆ
u · zεdx

)
= 0. (4.14)
R3 R3
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Hence, (4.12)-(4.14) imply that

‖zε‖2 +
ˆ

R3

V̂ε(x)|zε|2dx = oε(1),

and then we get vε → u in E, and the arguments in [13, Lemma 4.3] show that vε → u in H1(R3, C4). This 
completes the proof. �
Proof of Theorem 4.1. By Lemma 4.1-Lemma 4.5 above, one can obtains the conclusions of Theo-
rem 4.1. �
5. Decay estimate

In this section, we estimate the exponential decay properties of solutions. Let εj → 0 and vεj be a solution 
given by Theorem 4.1. For simplicity of notations, we denote vεj and yεj by vj and yj , respectively.

Let Lεj denote the set of all solutions of the following system

{
iα · ∇u− aβu + V̂εj (x)u− λφβu = P̂εj (x)f(|u|)u + Q̂εj (x)|u|u,
−Δφ + Mφ = 4πλ(βu) · u.

(5.1)

For u ∈ Lεj , similar to Lemma 2.8, we see that u ∈ L∞(R3, C4). We rewrite (5.1) as

Du = aβu− V̂εj (x)u + λφuβu + P̂εj (x)f(|u|)u + Q̂εj (x)|u|u.

Acting the operator D on the two sides and noting that D2 = −Δ, we get

Δu =
(
a + λφu

)2

u−
(
P̂εj (x)f(|u|) + Q̂εj (x)|u| − V̂εj (x)

)2

u

−D(λφu)βu−D

(
P̂εj (x)f(|u|) + Q̂εj (x)|u| − V̂εj (x)

)
u.

Now define

sgn u =
{

ū
|u| , if u �= 0,
0, if u = 0.

By Kato’s inequality [7], there holds

Δ|u| ≥ �[Δu(sgn u)].

Note that

�
[
D
(
P̂εj (x)f(|u|) + Q̂εj (x)|u| − V̂εj (x)

)
u(sgn u)

]
= 0,

we obtain

Δ|u| ≥
(
a + λφu

)2

|u| −
(
P̂εj (x)f(|u|) + Q̂εj (x)|u| − V̂εj (x)

)2

|u| − |D(λφu)| · |u|. (5.2)
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Choosing α ∈ [ 32 , 2], it follows from Hölder inequality and u ∈ L∞(R3, C4) that, for any x ∈ R3

|φu(x)| = λ

∣∣∣∣
ˆ

R3

[(βu)u](y)
|x− y| dy

∣∣∣∣ ≤ λ

ˆ

|x−y|≥1

|u(y)|2
|x− y|dy + λ

ˆ

|x−y|≤1

|u(y)|2
|x− y|dy

≤ λ

ˆ

|x−y|≥1

|u(y)|2dy + λ|u|∞
ˆ

|x−y|≤1

|u(y)|
|x− y|dy

≤ λ

ˆ

|x−y|≥1

|u(y)|2dy + λ|u|∞
( ˆ

|x−y|≤1

1
|x− y|α dy

) 1
α

|u| α
α−1

≤ λC

for some C > 0, where we have used the fact that α
α−1 ∈ [2, 3]. Similarly, we also have

|D(φu)(x)| ≤ λC, for any x ∈ R3.

So, it follows from (5.2) that there exist constants M > 0 and λ4 ∈ (0, min{λ1, λ2, λ3, λ∗}) such that, for 
any λ ∈ (0, λ4]

Δ|u| ≥ −M |u|.

It then follows from the sub-solution estimate [20,29] that

|u(x)| ≤ C0

ˆ

B1(x)

|u(y)|dy (5.3)

where C0 independent of x and ε.

Lemma 5.1. |vj(x)| → 0 as |x| → ∞ uniformly in j ∈ N.

Proof. Assume by contradiction that the conclusion of the Lemma does not hold. Then, it follows from 
(5.3) that there exist r̄ > 0 and xj ∈ R3 with |xj | → ∞ such that

r̄ ≤ |vj(xj)| ≤ C0

ˆ

B1(xj)

|vj(x)|dx.

Since vj → u in E, one obtains

r̄ ≤ C0

( ˆ

B1(xj)

|vj(x)|2dx
) 1

2

≤ C0

(ˆ

R3

|vj − u|2dx
) 1

2

+ C0

( ˆ

B1(xj)

|u(x)|2dx
) 1

2

→ 0

as j → ∞, a contradiction. �
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Lemma 5.2. There exists C > 0 such that

|vj(x)| ≤ Ce−ω̄|x|, ∀x ∈ R3

uniformly in j ∈ N, where ω̄ = a−|V |∞
2 .

Proof. It follows from (5.2), Lemma 5.1 and the boundedness of φu and D(φu) that there exist λ0 ∈ (0, λ4]
and R > 0 such that, for any λ ∈ (0, λ0]

Δ|vj | ≥
(a− |V |∞)2

4 |vj | = ω̄2|vj | for all |x| ≥ R , j ∈ N.

Let Γ(x) = Γ(x, 0) be a fundamental solution to −Δ + ω̄2 (see [29]). Using the uniform boundedness, one 
may choose Γ so that |vj(x)| ≤ ω̄2Γ(y) holds on |x| = R, all j ∈ N. Let zj = |vj | − ω̄2Γ. Then

Δzj = Δ|vj | − ω̄2ΔΓ ≥ ω̄2(|vj | − ω̄2Γ
)

= ω̄2zj .

By the maximum principle we can conclude that zj(x) ≤ 0 on |x| ≥ R. It is well known that there is C ′ > 0
such that Γ(x) ≤ C ′e−ω̄|x| on |x| ≥ 1. We see that

|vj(x)| ≤ Ce−ω̄|x|

for all x ∈ R3 and all j ∈ N. This completes the proof. �
Proof of Theorem 1.1. Define ωj(x) := uj( x

εj
), then ωj is a least energy solution of system (1.5) and xj :=

εjyj is a maximum point of |ωj |, and by Theorem 4.1, we know that the Theorem 1.1(i), (ii) hold. Moreover, 
one has

|ωj(x)| = |uj(
x

εj
)| = |vj(

x

εj
− yj)| ≤ Ce

−ω̄| x
εj

−yj | = Ce
− ω̄

εj
|x−εjyj | = Ce

− ω̄
εj

|x−xj |
.

Thus, the proof of Theorem 1.1 is completed. �
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