期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:489
Pizzetti and Cauchy formulae for higher dimensional surfaces: Adistributional approach
Article
Adan, Ali Guzman1  Sommen, Frank1 
[1] Univ Ghent, Clifford Res Grp, Dept Math Anal, Fac Engn & Architecture, Krijgslaan 281, B-9000 Ghent, Belgium
关键词: Pizzetti formula;    Cauchy theorem;    Integration;    Distributions;    Manifolds;    Dirac operator;   
DOI  :  10.1016/j.jmaa.2020.124140
来源: Elsevier
PDF
【 摘 要 】

In this paper, we study Pizzetti-type formulas for Stiefel manifolds and Cauchy-type formulas for the tangential Dirac operator from a distributional perspective. First we illustrate a general distributional method for integration over manifolds in R-m defined by means of kequations phi(1)((x) under bar) = ... = phi(k)((x) under bar) = 0. Next, we apply this method to derive an alternative proof of the Pizzetti formulae for the real Stiefel manifolds SO(m)/SO(m - k). Besides, a distributional interpretation of invariant oriented integration is provided. In particular, we obtain a distributional Cauchy theorem for the tangential Dirac operator on an embedded (m - k)-dimensional smooth surface. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_124140.pdf 530KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次