JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:366 |
Large deviations for martingales and derivatives | |
Article | |
Butler, S.1  Pavlov, S.2  Rosenblatt, J.1  | |
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA | |
[2] Renaissance Technol LLC, E Setauket, NY 11733 USA | |
关键词: Martingales; Lebesque derivatives; Large deviations; | |
DOI : 10.1016/j.jmaa.2009.12.054 | |
来源: Elsevier | |
【 摘 要 】
Fix a sequence of positive integers (m(n)) and a sequence of positive real numbers (w(n)). Two closely related sequences of linear operators (T(n)) are considered. One sequence has T(n) : L(1)(R) -> L(1) (R) given by the Lebesgue derivatives T(n)f (x) = D(n)f (x) = 2(n) integral(1/2n)(0) f(x + t)dt. The other sequence has T(n) : L(1) inverted right perpendicular0, 1) -> L(1)inverted right perpendicular0, 1) given by the dyadic martingale T(n)f (x) = E(f vertical bar beta(n))(x) = 2(n) integral(l/2n)((l-1)/2n) f (t)dt when (l - 1)/2(n) <= x < 1/2(n) for l = 1, ... , 2(n). We prove both positive and negative results concerning the convergence of Sigma(infinity)(n=1)m{vertical bar T(mn) f(x)vertical bar >= w(n)}. (C) 2010 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2009_12_054.pdf | 265KB | download |