期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:366
Large deviations for martingales and derivatives
Article
Butler, S.1  Pavlov, S.2  Rosenblatt, J.1 
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Renaissance Technol LLC, E Setauket, NY 11733 USA
关键词: Martingales;    Lebesque derivatives;    Large deviations;   
DOI  :  10.1016/j.jmaa.2009.12.054
来源: Elsevier
PDF
【 摘 要 】

Fix a sequence of positive integers (m(n)) and a sequence of positive real numbers (w(n)). Two closely related sequences of linear operators (T(n)) are considered. One sequence has T(n) : L(1)(R) -> L(1) (R) given by the Lebesgue derivatives T(n)f (x) = D(n)f (x) = 2(n) integral(1/2n)(0) f(x + t)dt. The other sequence has T(n) : L(1) inverted right perpendicular0, 1) -> L(1)inverted right perpendicular0, 1) given by the dyadic martingale T(n)f (x) = E(f vertical bar beta(n))(x) = 2(n) integral(l/2n)((l-1)/2n) f (t)dt when (l - 1)/2(n) <= x < 1/2(n) for l = 1, ... , 2(n). We prove both positive and negative results concerning the convergence of Sigma(infinity)(n=1)m{vertical bar T(mn) f(x)vertical bar >= w(n)}. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2009_12_054.pdf 265KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次