期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:389
The geometric structure of unit dual quaternion with application in kinematic control
Article
Wang, Xiangke1,2  Han, Dapeng3  Yu, Changbin2  Zheng, Zhiqiang1 
[1] Natl Univ Def Technol, Coll Mechatron & Automat, Changsha 410073, Hunan, Peoples R China
[2] Australian Natl Univ, Res Sch Engn, Canberra, ACT 0200, Australia
[3] Natl Univ Def Technol, Coll Aerosp & Mat Engn, Changsha 410073, Hunan, Peoples R China
关键词: Lie-group structure;    Unit dual quaternion;    Logarithmic mapping;    Kinematic control;   
DOI  :  10.1016/j.jmaa.2012.01.016
来源: Elsevier
PDF
【 摘 要 】

In this paper, the geometric structure, especially the Lie-group related properties, of unit dual quaternion is investigated. The exponential form of unit dual quaternion and its approximate logarithmic mapping are derived. Correspondingly, Lie-group and Lie-algebra on unit dual quaternions and the approximate logarithms are explored, respectively. Afterwards, error and metric based on unit dual quaternion are given, which naturally result in a new kinematic control model with unit dual quaternion descriptors. Finally, as a case study, a generalized proportional control law using unit dual quaternion is developed. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2012_01_016.pdf 298KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次