| OCEAN ENGINEERING | 卷:164 |
| Task priority control of underwater intervention systems: Theory and applications | |
| Article | |
| Simetti, E.1,2  Casalino, G.1,2  Wanderlingh, F.1,2  Aicardi, M.1,2  | |
| [1] Interuniv Res Ctr Integrated Syst Marine Environm, Via Opera Pia 13, I-16145 Genoa, Italy | |
| [2] Univ Genoa, DIBRIS, Via Opera Pia 13, I-16145 Genoa, Italy | |
| 关键词: Task priority control; Intervention autonomous underwater vehicles; Remotely Operated Vehicles; Kinematic control; Underwater Vehicle Manipulator Systems; | |
| DOI : 10.1016/j.oceaneng.2018.06.026 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
This paper presents a unifying task priority control architecture for underwater vehicle manipulator systems. The proposed control framework can be applied to different operative scenarios such as waypoint navigation, assisted teleoperation, interaction, landing and grasping. This work extends the results of the TRIDENT and MARIS projects, which were limited to the execution of grasping actions, to other applications taken from the DexROV and ROBUST projects. In particular, simulation results show how the control framework can be used, for example, for pipeline inspection scenarios and deep sea mining exploration.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_oceaneng_2018_06_026.pdf | 2719KB |
PDF