期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:440
Characterization of self-adjoint extensions for discrete symplectic systems
Article
Zemanek, Petr1  Clark, Stephen2 
[1] Masaryk Univ, Fac Sci, Dept Math & Stat, Kotlarska 2, CZ-61137 Brno, Czech Republic
[2] Missouri Univ Sci & Technol, Dept Math & Stat, 101 Rolla Bldg, Rolla, MO 65409 USA
关键词: Discrete symplectic system;    Linear relation;    Self-adjoint extension;    Krein-von Neumann extension;    Uniqueness;    Limit point criterion;   
DOI  :  10.1016/j.jmaa.2016.03.028
来源: Elsevier
PDF
【 摘 要 】

All self-adjoint extensions of minimal linear relation associated with the discrete symplectic system are characterized. Especially, for the scalar case on a finite discrete interval some equivalent forms and the uniqueness of the given expression are discussed and the Krein-von Neumann extension is described explicitly. In addition, a limit point criterion for symplectic systems is established. The result partially generalizes even the classical limit point criterion for the second order Sturm-Liouville difference equations. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2016_03_028.pdf 689KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次