期刊论文详细信息
| Opuscula Mathematica | |
| Krein-von Neumann extension of an even order differential operator on a finite interval | |
| Yaroslav I. Granovskyi1  | |
| 关键词: non-negative extension; Friedrichs' extension; Krein-von Neumann extension; boundary triple; Weyl function; | |
| DOI : 10.7494/OpMath.2018.38.5.681 | |
| 学科分类:数学(综合) | |
| 来源: AGH University of Science and Technology Press | |
PDF
|
|
【 摘 要 】
We describe the Krein-von Neumann extension of minimal operator associated with the expression \(\mathcal{A}:=(-1)^n\frac{d^{2n}}{dx^{2n}}\) on a finite interval \((a,b)\) in terms of boundary conditions. All non-negative extensions of the operator \(A\) as well as extensions with a finite number of negative squares are described.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201910189095680ZK.pdf | 487KB |
PDF