期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:434
Stability analysis in magnetic resonance elastography II
Article
Gimperlein, Heiko1,2,3  Waters, Alden4 
[1] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Paderborn, Inst Math, Warburger St 100, D-33098 Paderborn, Germany
[4] UCL, Dept Math, Gower St, London WC1E 6BT, England
关键词: Stability analysis;    Shear modulus reconstruction;    Magnetic resonance elastography;    Landweber scheme;    Biological tissues;    Optimal control;   
DOI  :  10.1016/j.jmaa.2015.10.010
来源: Elsevier
PDF
【 摘 要 】

We consider the inverse problem of finding unknown elastic parameters from internal measurements of displacement fields for tissues. In the sequel to [5], we use pseudodifferential methods for the problem of recovering the shear modulus for Stokes systems from internal data. We prove stability estimates in d = 2,3 with reduced regularity on the estimates and show that the presence of a finite dimensional kernel can be removed. This implies the convergence of the Landweber numerical iteration scheme. We also show that these hypotheses are natural for experimental use in constructing shear modulus distributions. (C) 2015 Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2015_10_010.pdf 334KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次