期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:463
Integral estimates of conformal derivatives and spectral properties of the Neumann-Laplacian
Article
Gol'dshtein, V1  Pchelintsev, V1,2,3  Ukhlov, A.1 
[1] Ben Gurion Univ Negev, Dept Math, POB 653, IL-8410501 Beer Sheva, Israel
[2] Tomsk Polytech Univ, Dept Math & Informat, Lenin Ave 30, Tomsk 634050, Russia
[3] Tomsk State Univ, Dept Gen Math, Lenin Ave 36, Tomsk 634050, Russia
关键词: Sobolev spaces;    Conformal mappings;    Quasiconformal mappings;    Elliptic equations;   
DOI  :  10.1016/j.jmaa.2018.02.063
来源: Elsevier
PDF
【 摘 要 】

In this paper we study integral estimates of derivatives of conformal mappings phi : D -> Omega of the unit disc D subset of C onto bounded domains Omega that satisfy the Ahlfors condition. These integral estimates lead to estimates of constants in Sobolev-Poincare inequalities, and by the Rayleigh quotient we obtain spectral estimates of the Neumann-Laplace operator in non-Lipschitz domains (quasidiscs) in terms of the (quasi)conformal geometry of the domains. Specifically, the lower estimates of the first non-trivial eigenvalues of the Neumann-Laplace operator in some fractal type domains (snowflakes) were obtained. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2018_02_063.pdf 1142KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次