期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:361
Vanishing solutions of anisotropic parabolic equations with variable nonlinearity
Article
Antontsev, S.2  Shmarev, S.1 
[1] Univ Oviedo, Dept Matemat, Oviedo, Spain
[2] Univ Lisbon, CMAF, P-1200 Lisbon, Portugal
关键词: Anisotropic parabolic equation;    Localized solutions;    Vanishing;    Asymptotic behavior;   
DOI  :  10.1016/j.jmaa.2009.07.019
来源: Elsevier
PDF
【 摘 要 】

We study the property of finite time vanishing of solutions of the homogeneous Dirichlet problem for the anisotropic parabolic equations u(t) - Sigma D-n(i=1)i(a(i)(x, t, u)vertical bar D(i)u vertical bar(pi(x,t)-2)D(i)u) + c(x, t)vertical bar u vertical bar(sigma(x,t)-2)u = f(x, t) with variable exponents of nonlinearity p(i)(x, t), sigma(x, t) is an element of (1, infinity). We show that the solutions of this problem may vanish in a finite time even if the equation combines the directions of slow and fast diffusion and estimate the extinction moment in terms of the data. If the solution does not identically vanish in a finite time, we estimate the rate of vanishing of the solution as t -> infinity. We establish conditions on the nonlinearity exponents which guarantee vanishing of the solution at a finite instant even if the equation eventually transforms into the linear one. (c) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2009_07_019.pdf 329KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次