JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:464 |
r-Almost Newton-Ricci solitons immersed into a Riemannian manifold | |
Article | |
Cunha, Antonio W.1  de Lima, Eudes L.2  de Lima, Henrique F.3  | |
[1] Univ Fed Piaui, Dept Matemat, BR-64049550 Teresina, Piaui, Brazil | |
[2] Univ Fed Campina Grande, Unidade Acad Ciencias Exatas & Nat, BR-58900000 Cajazeiras, Paraiba, Brazil | |
[3] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil | |
关键词: Space forms; r-Almost Newton-Ricci solitons; Totally geodesic hypersurfaces; Locally symmetric spaces; Einstein manifolds; | |
DOI : 10.1016/j.jmaa.2018.04.026 | |
来源: Elsevier | |
【 摘 要 】
We establish the new concept of r-almost Newton-Ricci soliton for hypersurfaces immersed in a Riemannian manifold, which involves the r-th Newton and the Ricci tensors and extends in a natural way the notion of immersed almost Ricci solitons introduced by Barros et al. [3]. In this setting, our purpose is to investigate the existence of these geometric objects. After exhibit some examples of r-almost Newton-Ricci solitons, we obtain sufficient conditions to guarantee that they must be totally geodesic under suitable constraints on the potential function and using appropriate maximum principles. Furthermore, a particular study of r-almost Newton-Ricci solitons immersed in a locally symmetric Einstein manifold is also made. (C) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2018_04_026.pdf | 349KB | download |