期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:464
r-Almost Newton-Ricci solitons immersed into a Riemannian manifold
Article
Cunha, Antonio W.1  de Lima, Eudes L.2  de Lima, Henrique F.3 
[1] Univ Fed Piaui, Dept Matemat, BR-64049550 Teresina, Piaui, Brazil
[2] Univ Fed Campina Grande, Unidade Acad Ciencias Exatas & Nat, BR-58900000 Cajazeiras, Paraiba, Brazil
[3] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词: Space forms;    r-Almost Newton-Ricci solitons;    Totally geodesic hypersurfaces;    Locally symmetric spaces;    Einstein manifolds;   
DOI  :  10.1016/j.jmaa.2018.04.026
来源: Elsevier
PDF
【 摘 要 】

We establish the new concept of r-almost Newton-Ricci soliton for hypersurfaces immersed in a Riemannian manifold, which involves the r-th Newton and the Ricci tensors and extends in a natural way the notion of immersed almost Ricci solitons introduced by Barros et al. [3]. In this setting, our purpose is to investigate the existence of these geometric objects. After exhibit some examples of r-almost Newton-Ricci solitons, we obtain sufficient conditions to guarantee that they must be totally geodesic under suitable constraints on the potential function and using appropriate maximum principles. Furthermore, a particular study of r-almost Newton-Ricci solitons immersed in a locally symmetric Einstein manifold is also made. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2018_04_026.pdf 349KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次