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We establish the new concept of r-almost Newton–Ricci soliton for hypersurfaces 
immersed in a Riemannian manifold, which involves the r-th Newton and the 
Ricci tensors and extends in a natural way the notion of immersed almost Ricci 
solitons introduced by Barros et al. [3]. In this setting, our purpose is to investigate 
the existence of these geometric objects. After exhibit some examples of r-almost 
Newton–Ricci solitons, we obtain sufficient conditions to guarantee that they must 
be totally geodesic under suitable constraints on the potential function and using 
appropriate maximum principles. Furthermore, a particular study of 1-almost 
Newton–Ricci solitons immersed in a locally symmetric Einstein manifold is also 
made.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The concept of Ricci soliton, which was introduced by Hamilton in his seminal work [12], corresponds to 
a natural generalization of the definition of Einstein metric. Let us recall that an n-dimensional Riemannian 
manifold (Mn, g) is said to be a Ricci soliton if there exist a complete vector field X on Mn and a constant 
λ ∈ R satisfying the following equation

Ric + 1
2LXg = λg, (1.1)

where Ric and L stand for the Ricci tensor and the Lie derivative on Mn, respectively.
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We note that Ricci solitons also corresponds to selfsimilar solutions of Hamilton’s Ricci flow [12] and 
often arise as limits of dilations of singularities in the Ricci flow. They can be viewed as fixed points of the 
Ricci flow, as a dynamical system on the space of Riemannian metrics modulo diffeomorphisms and scalings. 
For more details on this subject, we recommend the survey due to Cao [7] and the references therein.

Recently Pigola et al. [16] extended the definition of Ricci solitons by adding the condition on the 
parameter λ in (1.1) to be a real smooth function on Mn, attracting a lot of attention in the mathematical 
community. It is worth to remark that they arise from the Ricci–Bourguignon flow as discovered recently by 
Catino et al. [9]. In this more general setting, we refer to equation (1.1) as being the fundamental equation 
of an almost Ricci soliton (Mn, g,X, λ). For λ > 0 the almost Ricci soliton is shrinking, for λ = 0 it is 
steady, and for λ < 0 it is expanding. Otherwise, it is called indefinite.

In the particular case where the vector field X is the gradient of a smooth function f : Mn → R, the 
manifold will be called a gradient almost Ricci soliton. The function f is called the potential function of the 
gradient almost Ricci soliton. In this case, it is easy to see that equation (1.1) becomes

Ric + Hessf = λg, (1.2)

where Hessf stands for the Hessian of the potential function f . The almost gradient Ricci soliton equation 
(1.2) links geometric information about the curvature of the manifold through the Ricci tensor and the 
geometry of the level sets of the potential function by means of their second fundamental form. Hence, 
classifying almost gradient Ricci solitons under some curvature conditions is a natural problem.

In [3], Barros et al. studied isometric immersions of an almost Ricci soliton (Mn, g, X, λ) into a Rieman-
nian manifold M

n+p. In this context, they presented some obstruction results in order to obtain a minimal 
immersion under conditions on the sectional curvature of Mn+p. In particular, when M

n+p has nonpositive 
sectional curvature, they proved that if (Mn, g, X, λ) is a traditional Ricci soliton and X has integrable 
norm on Mn, then Mn cannot be minimal. Moreover, it was showed by Wylie [20] that if (Mn, g, X, λ) is 
a shrinking Ricci soliton, with X having bounded norm on Mn, then Mn must be compact. In particular, 
when M

n+p is a space form of nonpositive sectional curvature, then such an immersion cannot be minimal. 
We refer to [14] for further discussions about this subject.

Here, we introduce the new concept of r-almost Newton–Ricci soliton and study the properties of this new 
object. Our approach is based on the use of the so-called Newton transformations Pr and their associated 
second order differential operators Lr (see Section 2 for more details), which allows us to extend in a natural 
way the immersed almost Ricci solitons introduced in [3]. For this, let ϕ : Mn → M

n+1 be an oriented 
hypersurface immersed into an (n + 1)-dimensional Riemannian manifold M

n+1. We say that Mn is an 
r-almost Newton–Ricci soliton, for some 0 ≤ r ≤ n, if there exist a smooth function f : Mn → R such that 
the following equation holds:

Ric + Pr ◦ Hessf = λg, (1.3)

where λ is a smooth function on Mn and Pr ◦ Hessf stands for the tensor given by

Pr ◦ Hessf(X,Y ) = 〈Pr∇X∇f, Y 〉,

for tangent vector fields X, Y ∈ X(M). In particular, when r = 0 we recover the definition of a gradient 
almost Ricci soliton.

This manuscript is organized in the following way: In Section 2 we recall some basic facts and notations 
that will appear along the paper. Afterwards, in Section 3 we exhibit some examples of immersions satisfying 
the equation of r-almost Newton–Ricci solitons (1.3), for every 1 ≤ r ≤ n, and we establish our first main 
results concerning the existence of these geometric objects. Finally, in Section 4 we consider the particular 
case of 1-almost Newton–Ricci solitons immersed in a locally symmetric Einstein manifold.
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2. Preliminaries

Let ϕ : Mn → M
n+1 be an oriented and connected hypersurface immersed into an (n + 1)-dimensional 

Riemannian manifold M
n+1. It is well known that the Gauss equation of the immersion is given by

R(X,Y )Z = (R(X,Y )Z)� + 〈AX,Z〉AY − 〈AY,Z〉AX

for every tangent vector fields X, Y, Z ∈ X(M), where ( )� denotes the tangential component of a vector field 
in X(M) along Mn. Here, A : X(Σ) → X(Σ) stands for the second fundamental form (or shape operator) of 
Mn in M

n+1 with respect to a fixed orientation, R and R denote the curvature tensors of Mn+1 and Mn, 
respectively. In particular, the scalar curvature S of the hypersurface Mn satisfies

S =
n∑
i,j

〈R(ei, ej)ej , ei〉 + n2H2 − |A|2, (2.1)

where {e1, . . . , en} is an orthonormal frame on TM and | · | denotes the Hilbert–Schmidt norm. When M
n+1

is a space form of constant sectional curvature c, we have the identity

S = n(n− 1)c + n2H2 − |A|2. (2.2)

Associated to second fundamental form A of the hypersurface Mn there are n algebraic invariants, which 
are the elementary symmetric functions Sr of its principal curvatures k1, . . . , kn, given by

S0 = 1 and Sr =
∑

i1<...<ir

ki1 · · · kir .

The r-th mean curvature Hr of the immersion is defined by
(
n

r

)
Hr = Sr.

In the case r = 1, we have H1 = 1
n tr(A) = H the mean curvature of Mn.

For each 0 ≤ r ≤ n, one defines the r-th Newton transformation Pr : X(M) → X(M) of the hypersurface 
Mn by setting P0 = I (the identity operator) and, for 1 ≤ r ≤ n, via the recurrence relation

Pr =
r∑

j=0
(−1)r−j

(
n

j

)
HjA

r−j , (2.3)

where A(j) denotes the composition of A with itself, j times (A(0) = I). Let us remember that associated to 
each Newton transformation Pr one has the second order linear differential operator Lr : C∞(M) → C∞(M)
defined by

Lru = tr(Pr ◦ Hess u).

When r = 0, we note that L0 is just the Laplacian operator. Moreover, it is not difficult to see that

divM (Pr∇u) =
n∑

i=1
〈(∇eiPr)(∇u), ei〉 +

n∑
i=1

〈Pr(∇ei∇u), ei〉

= 〈divMPr,∇u〉 + Lru, (2.4)
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where the divergence of Pr on Mn is given by

divMPr = tr(∇Pr) =
n∑

i=1
(∇eiPr)(ei).

In particular, when the ambient space has constant sectional curvature equation (2.4) reduces to Lru =
divM (Pr∇u), because divMPr = 0 (see [17] for more details).

For our purpose, it also will be appropriate to deal with the so-called traceless second fundamental form of 
the hypersurface, which is given by Φ = A −HI. Observe that tr Φ = 0 and |Φ|2 = tr(Φ2) = |A|2−nH2 ≥ 0, 
with equality if and only if Mn is totally umbilical.

3. On the existence of r-almost Newton–Ricci solitons

Before present our first main results, we will exhibit some examples of immersions satisfying the equation 
of r-almost Newton–Ricci solitons (1.3).

Example 1. We consider the standard immersion of Sn into Sn+1, which we know that is totally geodesic. 
In particular, Pr ≡ 0 for all 1 ≤ r ≤ n, and choosing λ = (n − 1)/n, we obtain that the immersion satisfies 
equation (1.3).

Example 2. Let us consider the standard immersion of the n-sphere Sn into Euclidean space Rn+1 endowed 
with induced metric g. According to [4], by choosing the functions

λa(x) = −〈x, a〉 + n− 1 and fa(x) = −λa + c,

where a ∈ R
n+1, a �= 0, c ∈ R and x = (x1, . . . , xn+1) ∈ S

n is the position vector, we have that 
(Sn, g, ∇fa, λa) satisfies

Ric + Hessfa = λag.

On the other hand, it is well known that S
n+1 is totally umbilical with r-th mean curvature Hr = 1 and 

second fundamental form A = I. In particular, for every 0 ≤ r ≤ n − 1 the Newton tensors are given by

Pr = αI,

where α =
∑r

j=0(−1)r−j
(
n
j

)
. Hence, taking the smooth function f = α−1fa we get that the immersion 

satisfies equation (1.3).

Example 3. We recall that the Gaussian soliton is the Euclidean space Rn endowed with its standard metric 

| | and the potential function f(x) = λ

4 |x|
2 (see, for instance, Section 4.2 of [10]). On the other hand, it is 

well known that the horospheres of the hyperbolic space Hn+1 are totally umbilical hypersurfaces isometric 
to Rn, having r-th mean curvature Hr = 1 and second fundamental form A = I. Hence, we can reason as 
in Example 2 to verify that the horospheres Rn ↪→ H

n+1 satisfy equation (1.3).

In order to state and prove our first result let us quote the following maximum principle due to Caminha 
et al. [6] (for more details, see Proposition 1 of [6]). In what follows, for each p ≥ 1 we will use the notation

Lp(M) = {u : Mn → R ;
∫
M

|u|pdM < +∞}.



550 A.W. Cunha et al. / J. Math. Anal. Appl. 464 (2018) 546–556
Lemma 1. Let X be a smooth vector field on the n-dimensional, complete, noncompact, oriented Riemannian 
manifold Mn, such that divMX does not change sign on Mn. If |X| ∈ L1(M), then divMX = 0.

The following result extends Theorem 1.2 in [3].

Theorem 1. Let Mn be a complete r-almost Newton–Ricci soliton immersed into a Riemannian manifold 
Mn+1

c of constant sectional curvature c, with bounded second fundamental form and potential function 
f : Mn → R such that |∇f | ∈ L1(M). We have:

(i) If c ≤ 0 and λ > 0, then Mn can not be minimal;
(ii) If c < 0 and λ ≥ 0, then Mn can not be minimal;
(iii) If c = 0, λ ≥ 0 and Mn is minimal, then Mn is isometric to the Rn.

Proof. For its further reference, we observe that since the ambient space has constant sectional curvature, 
by equation (2.4) the operator Lr is a divergent type operator. On the other hand, because Mn has bounded 
second fundamental form it follows from (2.3) that the Newton transformation Pr has bounded norm. In 
particular,

|Pr∇f | ≤ |Pr||∇f | ∈ L1(M).

Regarding to (i) and (ii), let us assume by contradiction that Mn is minimal. Then, equation (2.2) jointly 
with the assumption c ≤ 0 (c < 0) imply that the scalar curvature of Mn satisfies S ≤ 0 (S < 0). Hence, 
contracting equation (1.3) we have Lrf = nλ − S > 0 in both the cases, which contradicts Lemma 1, since 
the remark aforementioned. This completes the proof of the two first assertions.

For the third claim, because the ambient space has constant sectional curvature c = 0 and Mn is minimal, 
we deduce from equation (2.2) that

S = −|A|2 ≤ 0.

So, since λ ≥ 0 we have that Lr(f) = nλ − S ≥ 0. By using that Lru = divM (Pr∇u) and |Pr∇f | ∈ L1(M)
we have once more from Lemma 1 that Lrf = 0 on Mn. Hence, we conclude that 0 ≥ S = λn ≥ 0, that is, 
S = λ = 0. This implies that |A|2 = 0. Therefore, the r-almost Newton–Ricci soliton Mn must be totally 
geodesic and flat. �

In order to obtain our next result we will need of the following key lemma, which corresponds to Theorem 3 
of [22].

Lemma 2. Let u be a nonnegative smooth subharmonic function on a complete Riemannian manifold Mn. 
If u ∈ Lp(M), for some p > 1, then u is constant.

Next, we are in condition to prove the following result, which holds when the ambient space is an arbitrary 
Riemannian manifold.

Theorem 2. Let Mn be a complete r-almost Newton–Ricci soliton immersed into a Riemannian manifold 
M

n+1 of sectional curvature K, such that Pr is bounded from above (in the sense of quadratic forms) and 
its potential function f : Mn → R is nonnegative and f ∈ Lp(M) for some p > 1. We have:

(i) If K ≤ 0 and λ > 0, then Mn can not be minimal;
(ii) If K < 0 and λ ≥ 0, then Mn can not be minimal;
(iii) If K ≤ 0, λ ≥ 0 and Mn is minimal, then Mn is flat and totally geodesic.
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Proof. Let us prove (i). Supposing by contradiction that Mn is minimal, our assumption on the sectional 
curvature of the ambient space and equation (2.1) imply that S ≤ 0. Hence, contracting equation (1.3) we 
have Lrf = nλ −R > 0. Thus, since we are assuming that Pr is bounded from above, there exists a positive 
constant β such that

βΔf ≥ Lrf > 0.

In particular, from Lemma 2 we get that f must be constant, which gives a contradiction. Finally, reasoning 
as in the proof of Theorem 1 we conclude (ii) and (iii). �
Remark 1. Let us recall that a Riemannian manifold Mn is said to be parabolic if the only subharmonic 
functions f ∈ C∞(M) with supM f < +∞ are the constant ones. In Theorem 2, we can replace the 
hypothesis that f is nonnegative and f ∈ Lp(M), for some p > 1, by assuming that f is bounded from 
above and Mn being parabolic. It was observed by Colding and Minicozzi [11] that a complete surface M2

satisfying quadratic area growth Vol(BM
s ) ≤ Cs2 must be parabolic, where BM

s denotes an intrinsic geodesic 
ball in M2. Furthermore, it was showed in [8] by Cao and Zhou that in a shrinking gradient Ricci soliton 
there is a uniform constant C > 0 so that Vol(BM

s ) ≤ Csn. Hence, all 2-dimensional shrinking gradient 
Ricci soliton M2 must be parabolic.

In our next result we extended Theorem 1.5 of [3] for the case when X = ∇f , giving conditions for 
an r-almost Newton–Ricci soliton immersed be totally umbilical since it has bounded second fundamental 
form. More precisely, we prove the following

Theorem 3. Let Mn be a complete r-almost Newton–Ricci soliton immersed into a Riemannian manifold 
M

n+1
c of constant sectional curvature c, with bounded second fundamental form and potential function 

f : Mn → R such that |∇f | ∈ L1(M). Then:

(i) If λ ≥ (n −1)c +nH2, then Mn is totally geodesic, with λ = (n −1)c and scalar curvature S = n(n −1)c;
(ii) If Mn is compact and λ ≥ (n − 1)c + nH2, then Mn is isometric to a Euclidean sphere;
(iii) If λ ≥ (n −1)(c +H2), then Mn is totally umbilical. In particular, the scalar curvature S = n(n −1)KM

is constant, where KM = λ
n−1 is the sectional curvature of Mn.

Proof. To prove (i), we observe that by definition of r-almost Newton–Ricci soliton jointly with equation 
(2.2) we find

Lrf = n(λ− (n− 1)c− nH2) + |A|2. (3.1)

Then, from our assumption on λ we get that Lrf is a nonnegative function on Mn. In particular, by Lemma 1
we obtain that Lrf vanishes identically. Hence, from equation (3.1) we conclude that Mn is totally geodesic 
and λ = (n − 1)c. Moreover, it is clear from equation (2.2) that S = n(n − 1)c, which proves the claim (i).

If Mn is compact, as it is totally geodesic, then the ambient space must be necessarily a sphere Sn+1 and 
Mn is isometric to the Euclidean sphere Sn, proving (ii).

For the third assertion, let us begin observing that equation (3.1) can be written in terms of the traceless 
second fundamental form Φ as

Lrf = n(λ− (n− 1)(c + H2)) + |Φ|2. (3.2)

So, our hypothesis on λ gives Lrf ≥ 0. Then, by applying Lemma 1 once more we have Lr(f) = 0. This 
implies that |Φ|2 = 0, that is, Mn is a totally umbilical hypersurface. In particular, the principal curvature 
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κ of Mn is constant and Mn has constant sectional curvature given by KM = c + κ2. This jointly with 
equation (3.2) assures that

λ = (n− 1)(c + H2) = (n− 1)(c + κ2) = (n− 1)KM ,

which implies that S = n(n − 1)KM , as desired. �
From Theorem 3 we get the following consequence

Corollary 1. Let Mn be a compact r-almost Newton–Ricci soliton immersed into Rn+1. If λ ≥ (n − 1)H2, 
then Mn is isometric to Sn.

Theorem 1.6 of [3] asserts that a nontrivial almost Ricci soliton Mn, minimally immersed in Sn+1 with 
S ≥ n(n − 2) and such that the norm of the second fundamental form attains its maximum, must be 
isometric to Sn. Applying Theorem 3 we obtain an extension of this result.

Corollary 2. Let Mn be a complete r-almost Newton–Ricci soliton minimally immersed in Sn+1. Suppose 
that S ≥ n(n − 2), the norm of the second fundamental form attains its maximum and λ ≥ n − 1. Then, 
Mn is isometric to Sn.

Proof. Since the immersion is minimal with S ≥ n(n − 2), from (2.2) we get that

|A|2 = n(n− 1) − S ≤ n.

From Simons’ formula [18], we obtain

Δ|A|2 = |∇A|2 + (n− |A|2)|A|2 ≥ 0.

Thus, we can apply Hopf’s strong maximum principle to get that ∇A = 0 on Mn. Therefore, Proposition 1 
of [13] assures that Mn must be compact and, hence, the result follows from Theorem 3. �

As another application of Lemma 2 we also get

Theorem 4. Let Mn be a complete r-almost Newton–Ricci soliton immersed into a Riemannian manifold 
M

n+1
c of constant sectional curvature c, such that Pr is bounded from above (in the sense of quadratic forms) 

and its potential function f : Mn → R is nonnegative and f ∈ Lp(M) for some p > 1. Then:

(i) If λ ≥ (n −1)c +nH2, then Mn is totally geodesic, with λ = (n −1)c and scalar curvature S = n(n −1)c.
(ii) If λ ≥ (n −1)(c +H2), then Mn is totally umbilical. In particular, the scalar curvature S = n(n −1)KM

is constant, where KM = λ
n−1 is the sectional curvature of Mn.

Proof. Let us begin observing that by equation (3.1) and assumption on λ we get

Lrf = n(λ− (n− 1)c− nH2) + |A|2 ≥ 0. (3.3)

Since we are assuming that Pr is bounded from above, there is a positive constant β such that

βΔf ≥ Lrf ≥ 0.
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By Lemma 2, we have that f must be constant. Therefore Lrf = 0, and by equation (3.3) we conclude that 
Mn is totally geodesic, λ = (n −1)c and S = n(n −1)c, proving item (i). Finally, reasoning as in Theorem 3, 
it is not difficult to prove item (ii). �
4. 1-almost Newton–Ricci solitons in locally symmetric spaces

In this section we will extend our previous results to the case of 1-almost Newton–Ricci solitons immersed 
into a locally symmetric Riemannian manifold. To this end, we will work with locally symmetric spaces 
obeying a standard curvature constraint.

Before stating the main results, let us recall that a Riemannian manifold is said to be locally symmetric
when all the covariant derivative components of its curvature tensor vanish identically. In this setting, such 
spaces consist in an interesting generalization of constant curvature spaces. Hence, it is a natural question 
to revisit in this ambient spaces the known results of constant curvature spaces.

Proceeding, let Mn be a hypersurface immersed into a locally symmetric Riemannian manifold M
n+1. 

In what follows we introduce our curvature constraint, which will be assumed in the main results of this 
section. More specifically, we will assume that there is a constant c1 such that the sectional curvature K of 
the ambient space M

n+1 satisfies the following equality:

K(η, v) = c1
n
, (4.1)

for vectors η ∈ T⊥M and v ∈ TM .

Remark 2. As mentioned above, a Riemannian manifold M
n+1
c of constant sectional curvature c is a locally 

symmetric space and it is easy to see that the curvature condition (4.1) is satisfied for every hypersurface Σn

immersed into M
n+1
c , with c1/n = c. Therefore, in some sense our assumption is a natural generalization of 

the case where the ambient space has constant sectional curvature. Moreover, when the ambient manifold 
is a Riemannian product of two Riemannian manifolds of constant sectional curvature, say M = M1(k1) ×
M2(k2), then M is also locally symmetric and, if k1 = 0 and k2 ≥ 0, then every hypersurface of the type 
Σ = Σ1 ×M2(k2), where Σ1 is an orientable and connected hypersurface immersed in M1(k1), satisfies the 
curvature constraint (4.1) with c1 = 0 (for more details, see Remark 3.1 of [1]).

Let Mn+1 be a locally symmetric Riemannian manifold satisfying condition (4.1) and let {e1, . . . , en+1}
be an orthonormal frame on TM . Then, its scalar curvature S is given by

S =
n+1∑
i=1

Ric(ei, ei)

=
n∑

i,j=1
〈R(ei, ej)ei, ej〉 + 2

n∑
i=1

〈R(en+1, ei)en+1, ei〉

=
n∑

i,j=1
〈R(ei, ej)ei, ej〉 + 2c1.

Moreover, it is well known that the scalar curvature of a locally symmetric Riemannian manifold is con-
stant. Thus, 

∑n
i,j=1〈R(ei, ej)ei, ej〉 is a constant naturally attached to a locally symmetric Riemannian 

manifold satisfying condition (4.1). So, for the sake of simplicity, we will adopt the following notation 
S := 1

n(n−1)
∑n

i,j=1〈R(ei, ej)ei, ej〉. It is worth pointing out that when M
n+1 is a space of constant sec-

tional curvature, then the constant S agrees with its sectional curvature.
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Before to present our next results, we exhibit an example of r-almost Newton–Ricci soliton immersed in 
a locally symmetric Riemannian manifold satisfying the curvature constraint (4.1).

Example 4. Since the canonical immersion Sn ↪→ S
n ×R is totally geodesic, proceeding as in Example 1 we 

see that this immersion satisfies equation (1.3) for all 1 ≤ r ≤ n and λ = (n − 1)/n.

The following result extends Theorem 1 for the context of 1-almost Newton–Ricci soliton immersed in a 
locally symmetric Einstein manifold.

Theorem 5. Let Mn+1 be a locally symmetric Einstein manifold satisfying the curvature condition (4.1). Let 
Mn be a complete 1-almost Newton–Ricci soliton immersed into M

n+1 with bounded second fundamental 
form and potential function f : Mn → R such that |∇f | ∈ L1(M). We have:

(i) If S ≤ 0 and λ > 0, then Mn can not be minimal;
(ii) If S < 0 and λ ≥ 0, then Mn can not be minimal;
(iii) If S = 0, λ ≥ 0 and Mn is minimal, then Mn is totally geodesic.

Proof. To prove (i), let us reason as in the proof of Theorem 1 assuming by contradiction that Mn is 
minimal. Then, by our hypothesis on the constant S we get from equation (2.1) that the scalar curvature 
of Mn satisfies S ≤ 0, which implies Lrf = nλ − S > 0.

On the other hand, we recall from the discussion in the Preliminaries that the differential operator L1

satisfies

L1f = divM (P1∇f) − 〈divMP1,∇f〉. (4.2)

In particular, taking an orthonormal frame {e1, . . . , en} on TM and denoting by N the orientation of Mn, 
it follows from Lemma 25 of [2] that

〈divMP1,∇f〉 =
n∑

i=1
〈R(N, ei)∇f, ei〉 = Ric(N,∇f).

Hence, since M
n+1 is assumed to be Einstein we conclude by equation (4.2) jointly with the previous identity 

that

L1f = divM (P1∇f).

Moreover, as was observed in Theorem 1 we get from our assumption on second fundamental form that 
|Pr∇f | ∈ L1(M). Therefore, we are in position to apply Lemma 1 to conclude that Lrf = 0, which gives a 
contradiction.

Finally, reasoning as above it is not difficult to prove (ii) and (iii). �
Remark 3. Taking into account Theorem 5, it is natural to ask oneself about the existence of Einstein 
manifolds which are locally symmetric. In this direction, Tod [19] showed that four-dimensional Einstein 
manifolds which are also D’Atri spaces are necessarily locally symmetric. More recently, Brendle [5] proved 
that a compact Einstein manifold of dimension n ≥ 4 having nonnegative isotropic curvature must be 
locally symmetric, extending a previous result of Micallef and Wang for n = 4 (see Theorem 4.4 of [15]). 
See also [21] for another sufficient conditions for an Einstein manifold to be locally symmetric.
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We continue obtaining an analogous result to Theorem 3 in the case where r = 1 and the ambient space 
is a locally symmetric space. More precisely, we get the following

Theorem 6. Let Mn+1 be a locally symmetric Einstein manifold satisfying the curvature condition (4.1). Let 
Mn be a complete 1-almost Newton–Ricci soliton immersed into M

n+1 with bounded second fundamental 
form and potential function f : Mn → R such that |∇f | ∈ L1(M). Then:

(i) If λ ≥ (n −1)S+nH2, then Mn is totally geodesic, with λ = (n −1)S and scalar curvature S = n(n −1)S;
(ii) If λ ≥ (n − 1)(S + H2), then Mn is totally umbilical. In particular, the scalar curvature S = n(n −

1)(S + κ2) is constant, where κ is the principal curvature of Mn.

Proof. The result follows as in the proof of Theorem 3. For the sake of completeness, we give the following 
argument that proves (i). Taking trace in (1.3) and using the definition of the constant S, we obtain from 
equation (2.1) that

Lrf = n(λ− (n− 1)S − nH2) + |A|2, (4.3)

which implies that L1f ≥ 0 because our hypothesis on λ. Then, by Lemma 1 we get that Lrf = 0. Therefore, 
we conclude from equation (4.3) that Mn is totally geodesic with λ = (n − 1)S and S = n(n − 1)S, proving 
the result. �

We close our paper quoting the following result, which can be obtained from the similar arguments used 
in the proofs of Theorems 4 and 6.

Theorem 7. Let Mn+1 be a locally symmetric Einstein manifold satisfying the curvature condition (4.1). Let 
Mn be a complete 1-almost Newton–Ricci soliton immersed into M

n+1 such that Pr is bounded from above 
(in the sense of quadratic forms), its potential function f : Mn → R is nonnegative and f ∈ Lp(M) for 
some p > 1. Then:

(i) If λ ≥ (n −1)S+nH2, then Mn is totally geodesic, with λ = (n −1)S and scalar curvature S = n(n −1)S.
(ii) If λ ≥ (n − 1)(S + H2), then Mn is totally umbilical. In particular, the scalar curvature S = n(n −

1)(S + κ2) is constant, where κ is the principal curvature of Mn.

Remark 4. We observe that in Theorems 5, 6 and 7 we can replace the hypothesis that the ambient space 
M

n+1 is Einstein by the weaker assumption that the tensor RicN : X(M) → X(M), given by RicN (X) =
Ric(N, X), is identically zero. With this improvement, the configuration of Example 4 is contemplated by 
these theorems.
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