期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:486
Infinitely many nodal solutions for nonlinear elliptic equations with combined nonlinearities and lack of symmetry
Article
He, Tieshan1  He, Lang2 
[1] Zhongkai Univ Agr & Engn, Sch Computat Sci, Guangzhou 510225, Peoples R China
[2] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
关键词: Nodal solutions;    Variational approach;    Gradient flow;    Strong comparison principle;    Concave-convex nonlinearities;   
DOI  :  10.1016/j.jmaa.2020.123889
来源: Elsevier
PDF
【 摘 要 】

We present a new approach to studying a parametric nonlinear Dirichlet problem driven by a nonhomogeneous differential operator and with a reaction which is concave (i.e., (p - 1)-sublinear) near zero and convex (i.e., (p - 1)-superlinear) near +/-infinity. The reaction term is not assumed to be odd. We show that for all small values of the parameter lambda > 0, the problem has infinitely many nodal solutions. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_123889.pdf 414KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次