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We present a new approach to studying a parametric nonlinear Dirichlet problem 
driven by a nonhomogeneous differential operator and with a reaction which is 
concave (i.e., (p − 1)-sublinear) near zero and convex (i.e., (p − 1)-superlinear) near 
±∞. The reaction term is not assumed to be odd. We show that for all small values 
of the parameter λ > 0, the problem has infinitely many nodal solutions.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω and let 1 < p < ∞. In this paper we study 
the nonlinear nonhomogeneous Dirichlet boundary value problem

−div a(z,Du(z)) = f(z, u(z), λ) in Ω, u |∂Ω= 0. (Pλ)

Here a : Ω ×RN → RN is a continuous map such that, for every z ∈ Ω, a(z, ·) is strictly monotone on RN , 
while (z, y) → a(z, y) is C1 on Ω×RN \ {0}. Also, the reaction term f : Ω ×R × (0, +∞)→ R is assumed to 
be a Carathéodory function in the (z, x) ∈ Ω ×R variables (i.e., for all x ∈ R and all λ > 0, z → f(z, x, λ)
is measurable and for almost all z ∈ Ω and all λ > 0, x → f(z, x, λ) is continuous), which exhibits (p − 1)-
superlinear growth near ±∞ but without satisfying the usual in such cases Ambrosetti-Rabinowitz condition. 
Instead, we employ an alternative weaker condition, which incorporates in our framework functions with 
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“slower” growth near ±∞. In addition, our hypotheses on x → f(z, x, λ) imply the presence of concave 
((p − 1)-sublinear) terms in the reaction. So, we have in problem (Pλ) the competing effects of convex and 
concave nonlinearities. A very special case is the classical convex-concave nonlinearity of the form

λ |x|q−2
x + |x|r−2

x for all x ∈ R, with 1 < q < p < r < p�,

where

p� =
{

Np
N−p if p < N,

+∞ if p ≥ N.

This particular reaction can be found in the semilinear works (i.e., equations driven by the Laplacian) of 
Ambrosetti-Brezis-Cerami [2], Bartsch-Willem [9], Li-Wu-Zhou [23]. Extensions to equations driven by the 
p-Laplacian, can be found in the works of Filippakis-Kristaly-Papageorgiou [12], Garcia Azorero-Manfredi-
Peral Alonso [14], Guo-Zhang [16] and Hu-Papageorgiou [20]. With the exception of [12], the other works 
do not provide sign information for all the solutions. In [12] the concave term is perturbed by a (p − 1)-
superlinear nonlinearity. We should also mention the very recent works of Aizicovici-Papageorgiou-Staicu [1]
and Filippakis-O’Regan-Papageorgiou [13], which are concerned with equations driven by a nonhomogeneous 
differential operator and include concave terms. In [1,12,13], one nodal (that is, sign changing) solution was 
obtained.

Our work is closely related to the papers of Aizicovici-Papageorgiou-Staicu [1] and Filippakis-O’Regan-
Papageorgiou [13] and in fact it complements them. More precisely, by using constant sign solutions obtained 
in [1, Theorem 2]; [13, Theorem 4.6], we show that problem (Pλ), with no odd symmetry on reaction, 
admits infinitely many nodal solutions. We mention the related recent works of Amster [3], Papageorgiou-
Rădulescu-Repovš [28,29], which deal with Robin problems and that of Papageorgiou-Rădulescu-Repovš 
[31], Rolando [36], which deal with singular problems, and that of Papageorgiou-Rădulescu [27] concerning 
resonant (p,2)-equations.

If the reaction term is odd in a neighborhood of zero and satisfies certain conditions, by using a variant 
of the symmetric mountain pass theorem due to Kajikiya [21], problem (Pλ) admits infinitely many nodal 
solutions converging to zero in C1

0 (Ω) (see He-Yan-Sun-Zhang [18] and Papageorgiou-Rădulescu-Repovš 
[30]). We also mention the work of Bartsch-Liu-Weth [8], where under symmetry conditions (namely that 
the reaction term is odd), the authors produce infinitely many nodal solutions. If the reaction term is not odd 
in x, the symmetry of the corresponding functional is completely broken. The idea of using perturbation 
methods for solving such broken symmetry problems was introduced by Bahri-Berestycki [5], Bolle [10], 
Rabinowitz [35] and Struwe [37]. These perturbative arguments have been used by several authors (see, for 
instance, Bartolo [6], Candela-Palmieri-Salvatore [11], Lancelotti-Musesti-Squassina [22] and Zhang-Tang-
Chen [38]). It is worth noticing that the authors in [5,6,10,11,35,37,38] produce infinitely many solutions 
but do not show that they are nodal.

Our approach is new in finding infinitely many nodal solutions. The main idea of this work consists in 
the construction of infinitely many closed convex sets which contain the biggest positive solution and the 
smallest negative solution in their interior, via upper-lower solutions and the strong monotonicity property 
of solutions. Moreover, these closed convex sets are invariant for the flow associated to a suitably constructed 
pseudo-gradient vector field. Refined variational arguments will be developed to find nodal critical points 
inside of closed convex sets and outside of smaller closed convex sets.

In the next section, for easy reference, we recall some of the main mathematical tools that will be used in 
the sequel. We also present the hypotheses on the map a(·, ·) and state some useful consequences of them.
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2. Mathematical background

In the analysis of problem (Pλ), in addition to the Sobolev space W 1,p
0 (Ω), we will also use the ordered 

Banach space C1
0 (Ω) = {u ∈ C1(Ω) : u |∂Ω= 0}. The order cone of C1

0(Ω) is C+ := {u ∈ C1
0 (Ω) : u(z) ≥

0 for all z ∈ Ω}. This cone has a nonempty interior given by

intC+ := {u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u

∂n
< 0 for all z ∈ ∂Ω},

where n(·) denotes the outward unit normal on ∂Ω. By ‖·‖ we denote the norm of the Sobolev space W 1,p
0 (Ω), 

and by ‖·‖s we denote the norm of Ls(Ω) (1 ≤ s ≤ +∞). Thanks to the Poincaré inequality we have

‖u‖ = ‖Du‖p for all u ∈ W 1,p
0 (Ω).

We mention that ‖·‖ also denotes the norm of RN . However, no confusion will come up since the context 
will make it clear. By (·, ·)RN we denote the inner product in RN and by |·|N the Lebesgue measure on RN .

In what follows η ∈ C1(0, ∞) is such that

0 < ĉ ≤ tη′(t)
η(t) ≤ c0 for all t > 0 and some ĉ, c0 > 0

and

c1t
p−1 ≤ η(t) ≤ c2(tq0−1 + tp−1) for all t > 0 and some c1, c2 > 0,

with 1 < q0 ≤ p < ∞. The map a(·, ·) entering the left-hand side of problem (Pλ) is assumed to satisfy the 
following conditions:
H1: a(z, y) = a0(z, ‖y‖)y, where a0 : Ω × (0, +∞) → (0, +∞) is such that limt→0+ a0(z, t)t = 0 for every 
z ∈ Ω; moreover,

(i) a ∈ C(Ω×RN , RN ) ∩ C1(Ω × RN \ {0}, RN ) and for every K ⊆ RN \ {0} compact, there exists 
β = β(K) ∈ (0, 1) such that a ∈ C0,β(Ω×K, RN );

(ii) for all (z, y) ∈ Ω ×RN \ {0}, we have

η(‖y‖)
‖y‖ ‖ξ‖2 ≤ (Dya(z, y)ξ, ξ)RN for all ξ ∈ RN ;

(iii) for all (z, y) ∈ Ω ×RN \ {0} we have

‖Dya(z, y)‖ ≤ c3
η(‖y‖)
‖y‖ for some c3 > 0;

(iv) the primitive G(z, y) determined by

DyG(z, y) = a(z, y) for all (z, y) ∈ Ω×RN and G(z.0) = 0 for all z ∈ Ω

satisfies

k(z) ≤ pG(z, y) − (a(z, y), y)RN for all z ∈ Ω and all y ∈ RN ,

with k ∈ L1(Ω);
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(v) there exists q ∈ (1, p) such that

lim
y→0

G(z, y)
‖y‖q = 0 uniformly for all z ∈ Ω

and if G0(z, t) =
∫ t

0 a0(z, s)sds for all t > 0, then for some τ ∈ (q, p), the function t 
→ G0(z, t
1
τ ) is convex.

Example 1. The following maps satisfy hypotheses (H1):
(a) a1(z, y) = θ(z) ‖y‖p−2

y with 1 < p < +∞, θ ∈ C1(Ω), θ(z) > 0 for all z ∈ Ω. This map corresponds 
to the weighted p-Laplacian differential operator.

(b) a2(z, y) = θ1(z) ‖y‖p−2
y + θ2(z) ‖y‖q−2

y with 1 < q < p < +∞, θ1, θ2 ∈ C1(Ω), θ1(z) > 0, θ2(z) > 0
for all z ∈ Ω. This map corresponds to the weighted (p, q)-Laplacian differential operator.

(c) a3(z, y) = (1 + ‖y‖2) p−2
2 y with 1 < p < +∞. This map corresponds to the generalized p-mean 

curvature operator.

The following properties of the map a(·, ·) follow by straightforward arguments.

Lemma 2. If hypotheses (H1) hold, then
(i) for all z ∈ Ω, y 
→ a(z, y) is strictly monotone;
(ii) ‖a(z, y)‖ ≤ c4(1 + ‖y‖ p−1) for all (z, y) ∈ Ω×RN and some c4 > 0;
(iii) (a(z, y), y)RN ≥ c1

p−1 ‖y‖
p for all (z, y) ∈ Ω×RN ;

(iv) c1
p(p−1) ‖y‖

p ≤ G(z, y) ≤ c5(1 + ‖y‖p) for all (z, y) ∈ Ω×RN and some c5 > 0.

In the sequel 〈·, ·〉 denotes the duality brackets for the pair ((W 1,p
0 (Ω))�, W 1,p

0 (Ω)). Let A : W 1,p
0 (Ω) 
→

W−1,p′(Ω)) = (W 1,p
0 (Ω))� ( 1

p + 1
p′ = 1) be the nonlinear map defined by

〈A(u), y〉 =
∫
Ω

(a(z,Du), Dy)RN dz for all u, y ∈ W 1,p
0 (Ω).

We know that A is bounded (maps bounded sets to bounded ones), continuous, strictly monotone and of 
type (S)+, i.e., if un → u weakly in W 1,p

0 (Ω) and lim supn→∞ 〈A(un), un − u〉 ≤ 0, then un → u in W 1,p
0 (Ω)

(see, for example, Gasiński-Papageorgiou [15]).
The following simple fact about ordered Banach spaces can be found in Filippakis-Kristály-Papageorgiou 

[12, Lemma 3.3] and will be used in the paper.

Proposition 3. Let X be an ordered Banach space, K is an order cone of X, with intK 
= ∅ and x0 ∈ intK. 
Then, for every y ∈ X there exists t = t(y) > 0 such that tx0 − y ∈ intK.

Now, let f0 : Ω ×R 
→ R be a Carathéodory function such that

|f0(z, x)| ≤ a0(z)(1 + |x|r−1) for a. a. z ∈ Ω, all x ∈ R

with a0 ∈ L∞(Ω)+ and 1 < r < p�. We set F0(z, x) =
∫ x

0 f0(z, t)dt and consider the C1-functional 
ϕ0 : W 1,p

0 (Ω) 
→ R defined by

ϕ0(u) =
∫

G(z,Du(z))dz −
∫

F0(z, u(z))dz.

Ω Ω
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From Aizicovici-Papageorgiou-Staicu [1, Proposition 2] we know that if u0 ∈ W 1,p
0 (Ω) is a local C1

0 (Ω)-
minimizer of ϕ0, then it is also a local W 1,p

0 (Ω)-minimizer of ϕ0.
Let g, h ∈ L∞(Ω). We write g ≺ h if for every compact subset K ⊆ Ω there exists ε = ε(K) > 0, such 

that

g(z) + ε ≤ h(z) for a. a. z ∈ K.

Clearly, if g, h ∈ C(Ω) and g(z) < h(z) for all z ∈ Ω, then g ≺ h. Using this order ≺ we state the following 
strong comparison theorem (see [13, Proposition 2.4]; [33, Proposition 2.9]) which extends Proposition 2.6 
of Arcoya-Ruiz [4] where the case of the p-Laplacian (i.e., G(z, y) = 1

p ‖y‖
p for all (z, y) ∈ Ω×RN ) is 

considered.

Proposition 4. If hypotheses (H1) hold, ξ ≥ 0, g, h ∈ L∞(Ω) satisfy g ≺ h and u, v ∈ W 1,p
0 (Ω) are solutions 

of the Dirichlet problems

−div a(z,Du) + ξ |u|p−2
u = g in Ω, u |∂Ω= 0

and

−div a(z,Dv) + ξ |v|p−2
v = h in Ω, v |∂Ω= 0

and v ∈ intC+, then v − u ∈ intC+.

Let us recall what we mean by upper and lower solutions for problem (Pλ).

Definition 5. (a) An upper solution for problem (Pλ) is a function u ∈ W 1,p
0 (Ω) such that u |∂Ω≥ 0 and

∫
Ω

(a(z,Du), Dh)RN dz ≥
∫
Ω

f(x, u, λ)hdz (1)

for all h ∈ W 1,p
0 (Ω) with h ≥ 0. We say that u is a strict upper solution if it is an upper solution but not a 

solution for (Pλ).
(b) A lower solution for problem (Pλ) is a function u ∈ W 1,p

0 (Ω) such that u |∂Ω≤ 0 and the inequality 
in (1) is reversed. Analogously, we define a strict lower solution.

Finally, we conclude this section by introducing some notation. Let z ∈ R. We set z± = max{±z, 0} and 
for u ∈ W 1,p

0 (Ω), we define u±(·) = u(·)±. We know that

u± ∈ W 1,p
0 (Ω), |u| = u+ + u− and u = u+ − u−.

The Nemytskii map corresponding to a measurable function h : Ω ×R
→ R is indicated as

Nh(u)(·) = h(·, u(·)) for all u ∈ W 1,p
0 (Ω).

Furthermore, for u, v ∈ W 1,p
0 (Ω) and v ≤ u a.e. in Ω, we define by [v, u] the ordered interval given by

[v, u] = {w ∈ W 1,p
0 (Ω) : v(z) ≤ w(z) ≤ u(z) a. e. in Ω}.

The sets intC1
0 (Ω) [v, u] and ∂C1

0 (Ω) [v, u] are the interior and boundary of the order interval [v, u] in C1
0 (Ω), 

respectively. If ϕ ∈ C1(X, R) (X a Banach space), then by Kϕ we denote the critical set of ϕ, that is,
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Kϕ = {u ∈ X : ϕ′(u) = 0}.

By S+
λ (respectively S−

λ ), we denote the set of nontrivial positive (respectively negative) solutions of problem 
(Pλ).

3. Infinitely many nodal solutions

In this section, we use truncation techniques and flow invariance arguments to prove the existence of 
infinitely many nodal solutions for problem (Pλ), with no odd symmetry on reaction, whenever λ belongs 
to a small interval of the form (0, λ�). Our hypotheses on the reaction f : Ω × R × (0, +∞) 
→ R are the 
following.
H2 : f : Ω × R × (0, +∞) 
→ R is a function, such that for all λ > 0, (z, x) 
→ f(z, x, λ) is a Carathéodory 
function, f(z, 0, λ) = 0 for a.a. z ∈ Ω, for all λ > 0, and

(i) for every ρ > 0 and λ > 0, there exists aρ(·, λ) ∈ L∞(Ω)+ such that |f(z, x, λ)| ≤ aρ(z, λ) for a.a.
z ∈ Ω and all |x| ≤ ρ;

(ii) if F (z, x, λ) =
∫ x

0 f(z, s, λ)ds, then for all λ > 0, limx→±∞
F (z,x,λ)

|x|p = +∞ uniformly for a.a. z ∈ Ω
and there exists r ∈ (p, p�) and η1, η1 ∈ L∞(Ω) such that for every λ > 0, we have

η1(z) ≤ lim inf
x→±∞

f(z, x, λ)
|x|r−2

x
≤ lim sup

x→±∞

f(z, x, λ)
|x|r−2

x
≤ η2(z) uniformly for a. a. z ∈ Ω;

(iii) for every λ > 0, there exist τ0 = τ0(λ) ∈ ((r − p) max{N
p , 1}, p�) and β0 = β0(λ) > 0 such that

lim inf
x→±∞

f(z, x, λ)x− pF (z, x, λ)
|x|τ0 ≥ β0 uniformly for a. a. z ∈ Ω;

(iv) if q ∈ (1, p) is as in hypothesis H1(v), then for all λ > 0 we have ĉ0 |x|q ≤ f(z, x, λ)x for a.a. z ∈ Ω
and all x ∈ R, with ĉ0 = ĉ0(λ) > 0, there exists δ0 = δ0(λ) > 0 such that

0 < f(z, x, λ) ≤ qF (z, x, λ) for a. a. z ∈ Ω, all |x| ≤ δ0,

ess infΩ F (·, δ0, λ) > 0,

and there exists η0(·, λ) ∈ L∞(Ω)+ with ‖η0(·, λ)‖∞ → 0 as λ → 0+ and

lim sup
x→0

F (z, x, λ)
|x|q ≤ η0(z, λ) uniformly for a. a. z ∈ Ω.

Remark 6. Hypothesis H2(ii) implies that the primitive F (z, ·, λ) (λ > 0) is p-superlinear near ±∞. However, 
we stress that we do not employ the usual AR-condition when dealing with superlinear problems. Instead, 
we use hypotheses H2(ii), (iii) which are weaker and incorporates in our framework superlinear nonlinearities 
with “slower” growth near ±∞ which fail to satisfy the AR-condition.

Example 7. The following functions satisfy hypotheses H2 (for the sake of simplicity we drop the z-
dependence):

(i) f1(x, λ) = λ |x|q−2
x + |x|r−2

x for all x ∈ R and with 1 < q < p < r < p�. This is the nonlinearity 
considered in Ambrosetti-Brezis-Cerami [2] where p = 2 (semilinear equations driven by the Laplacian) and 
in Garcia Azorero-Manfredi-Peral Alonso [14], Guo-Zhang [16] where 1 < p < +∞ (nonlinear equations 
driven by the p-Laplacian).

(ii) f2(x, λ) = λ |x|q−2
x + |x|p−2

x ln(|x|+1) for all x ∈ R and with 1 < q < p < +∞. This function does 
not satisfy the AR-condition.
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By using variational methods coupled with truncation techniques and comparison principles, Aizicovici-
Papageorgiou-Staicu [1] have established the following multiplicity result.

Proposition 8. [1, Theorem 2] If hypotheses H1 and H2 hold, then there exists λ� > 0 such that for all 
λ ∈ (0, λ�), problem (Pλ) has at least five nontrivial smooth solutions u, ̂u ∈ intC+, v, ̂v ∈ −intC+ and 
y ∈ C1

0 (Ω) \ {0}nodal.

In the above theorem, the authors only produce one nodal solution. Next will produce infinitely many 
nodal solutions for problem (Pλ). To do this, we need to strengthen the hypotheses on the reaction f(z, x, λ).
H′

2 : f : Ω × R × (0, +∞) 
→ R is a function, such that for all λ > 0, (z, x) 
→ f(z, x, λ) is a Carathéodory 
function, λ 
→ f(z, x, λ)x is nondecreasing, f(z, 0, λ) = 0 for a.a. z ∈ Ω, for all λ > 0, hypotheses H′

2(i)-(iv) 
are the same as the corresponding hypotheses H2(i)-(iv) and

(v) for every λ > 0 and every ρ > 0, there exists ξλρ > 0 such that for a.a. z ∈ Ω, the function 
x 
→ f(z, x, λ) + ξλρ |x|p−2

x is nondecreasing on [−ρ, ρ]; and for every s > 0, there exists ms > 0 such that

|f(z, x, μ) − f(z, x, λ)| ≥ ms

for a.a. z ∈ Ω, all |x| ≥ s and all μ > λ > 0.

Remark 9. The examples of functions presented after hypotheses H2 still satisfy the new conditions stated 
in hypotheses H′

2.

Proposition 10. If hypotheses H1 and H′
2 hold, 0 < μ < λ < λ� and uλ ∈ S+

λ (resp. vλ ∈ S−
λ ), then there 

exists uμ ∈ S+
μ (resp. vμ ∈ S−

μ ) such that uλ − uμ ∈ intC+ (resp. vλ − vμ ∈ −intC+).

Proof. Let 0 < μ < λ < λ� and let uλ ∈ S+
λ (see Proposition 8). We have

−div a(z,Duλ(z)) = f(z, uλ(z), λ) ≥ f(z, uλ(z), μ) a. e. in Ω, (2)

because μ < λ and the fact that λ 
→ f(z, x, λ) is nondecreasing (see hypotheses H′
2). Then, uλ is an upper 

solution of problem (Pμ). We introduce the following Carathéodory function

f̂μ(z, x) =
{ 0 if x < 0,

f(z, x, μ) if 0 ≤ x ≤ uλ(z),
f(z, uλ, μ) if uλ(z) < x.

(3)

Setting F̂μ(z, x) =
∫ x

0 f̂μ(z, s)ds we defined the C1-functional ϕ̂μ : W 1,p
0 (Ω) 
→ R through

ϕ̂μ(u) =
∫
Ω

G(z,Du(z))dz −
∫
Ω

F̂μ(z, u(z))dz.

By virtue of Lemma 2 (iv) and the truncation defined in (3), we conclude that ϕ̂μ is coercive. Moreover, 
using the Sobolev embedding theorem, we see that ϕ̂μ is sequentially weakly lower semicontinuous. So, by 
the Weierstrss theorem, there exists uμ ∈ W 1,p

0 (Ω) such that

ϕ̂μ(uμ) = inf
u∈W 1,p

0 (Ω)
ϕ̂μ(u). (4)

Given ε > 0, by virtue of hypothesis H1(v), there exists δ = δ(ε) > 0 such that
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G(z, y) ≤ ε ‖y‖q for all z ∈ Ω, all ‖y‖ ≤ δ. (5)

Let ũ ∈ intC+ and recall that uλ ∈ intC+. By Proposition 3 there exists a number t ∈ (0, 1) small enough 
such that

‖D(tũ)(z)‖ ≤ δ, tũ(z) ≤ uλ(z) for all z ∈ Ω. (6)

Then, due to (5), (6) and H′
2(iv), we obtain

ϕ̂μ(tũ) =
∫
Ω

G(z,D(tũ))dz −
∫
Ω

F̂μ(z, tũ)dz

≤ εtq ‖Dũ‖qq − ĉ0t
q ‖ũ‖qq . (7)

If we choose ε small enough such that ε ‖Dũ‖qq < ĉ0 ‖ũ‖qq, then from (7) we infer that ϕ̂μ(tũ) < 0, that 
means, ϕ̂μ(uμ) < 0 = ϕ̂μ(0), and thus, uμ 
= 0. From (4), there holds (ϕ̂μ)′(uμ) = 0 which gives

A(uμ) = Nf̂μ
(uμ). (8)

Taking −(uμ)− ∈ W 1,p
0 (Ω) as test function in (8) and applying Lemma 2 (iii) combined with the truncation 

in (3) gives

c1
p− 1

∥∥D(uμ)−
∥∥p
p
≤ 0

ensuring that uμ ≥ 0, uμ 
= 0. Now, taking (uμ − uλ)+ ∈ W 1,p
0 (Ω) as test function in (8) results in, due to 

(3) and (2),

〈
A(uμ), (uμ − uλ)+

〉
=

∫
Ω

f̂μ(z, uμ)(uμ − uλ)+dz

=
∫
Ω

f̂μ(z, uλ)(uμ − uλ)+dz

≤
〈
A(uλ), (uμ − uλ)+

〉
.

Therefore,
∫

{uμ>uλ}

(a(z,Duμ) − a(z,Duλ), Duμ −Duλ)RN dz ≤ 0,

which implies |{uμ > uλ}|N = 0, so uμ ≤ uλ. Hence, we have proved that uμ ∈ [0, uλ] with uμ 
= 0. Then, 
according to (3), relation (8) becomes

A(uμ) = Nfμ(uμ) with fμ(z, x) = f(z, x, μ),

which means that

−div a(z,Duμ(z)) = f(z, uμ(z), μ) a. e. in Ω, u |∂Ω= 0. (9)

From the regularity result of Lieberman [24, p. 320] we infer that uμ ∈ C+ \ {0}.
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Let 
 = ‖uμ‖∞ and let ξμ	 > 0 be as postulated by hypothesis H′
2(v). Then,

−div a(z,Duμ(z)) + ξμ	uμ(z)p−1 = f(z, uμ(z), μ) + ξμ	uμ(z)p−1 ≥ 0 a. e. in Ω

(see (9) hypothesis H′
2(v)). We know that

div a(z,Duμ(z)) ≤ ξμ	uμ(z)p−1 a. e. in Ω.

Then, the strong maximum principle of Pucci-Serrin [34, p. 111] implies that uμ(z) > 0 for all z ∈ Ω (recall 
that uμ 
= 0). Thus, by the boundary point theorem of Pucci-Serrin [34, p. 120] we conclude that uμ ∈ intC+.

Let ρ = ‖uλ‖∞ and let ξμρ > 0 be as postulated by hypothesis H′
2(v). Using hypothesis H′

2(v), λ > μ, uλ ≥
uμ and the fact uμ ∈ S+

μ , we have

−div a(z,Duμ) + ξμρuμ
p−1 = f(z, uμ, μ) + ξμρuμ

p−1

≤ f(z, uλ, μ) + ξμρuλ
p−1

= f(z, uλ, λ) + ξμρuλ
p−1 − (f(z, uλ, λ) − f(z, uλ, μ))

≤ f(z, uλ, λ) + ξμρuλ
p−1

= −div a(z,Duλ) + ξμρuλ
p−1.

Note that, if g(z) = f(z, uλ, λ) − f(z, uλ, μ), then since uλ ∈ intC+ and owing to hypothesis H′
2(v) we 

have 0 ≺ g and so we may apply the strong maximum principle (see Proposition 4) to conclude that 
uλ − uμ ∈ intC+.

An similar reasoning shows that there exists vμ ∈ S−
μ such that vμ − vλ ∈ −intC+. �

Recall that a nonempty set S ⊆ W 1,p
0 (Ω) is upward (respectively downward) directed if for all u, v ∈ S

we can find w ∈ S such that w ≥ max{u, v} (respectively w ≤ min{u, v}).

Proposition 11. Let u ∈ intC+ and v ∈ −intC+ be, respectively, an upper solution and a lower solution 
of problem (Pλ). If hypotheses H1 and H′

2 hold and λ ∈ (0, λ�), then problem (Pλ) has a biggest positive 
solution u� ∈ [v, u] ∩ intC+ and a smallest negative solution v� ∈ [v, u] ∩ (−intC+).

Proof. As before, we deal only with existence of the biggest positive solution in [v, u]; the other part goes 
in a similar way.

Let S+
0 be the set of positive solutions of problem (Pλ) belonging to the order interval [v, u]. In 

Proposition 10 we have seen that S+
0 
= ∅. We will show that the set S+

0 is upward directed. For this 
purpose, we fix w1, w2 ∈ S+

0 . These are also lower solutions for problem (Pλ). Hence, Lemma 4.12 of 
Papageorgiou-Rocha-Staicu [32] implies that w0 = max{w1, w2} is a lower solution too (see also Lemma 4.2 
of Filippakis-Kristaly-Papageorgiou [12]). Then we truncate the reaction term of problem (Pλ) at {w0, u}
and proceed as in the proof of Proposition 10. We obtain a solution ŵ0 ∈ [w0, u] of problem (Pλ). Hence 
ŵ0 ∈ S+

0 and so S+
0 is upward directed.

Using Lemma 3.10 of Hu-Papageorgiou [19], we can find a sequence {un} ⊆ S+
0 , nondecreasing, such that 

supS+
0 = supn≥1 un. We have

A(un) = Nf̂λ
(un) for all n ≥ 1, (10)

where f̂λ is the truncation of fλ at {0, u}, where fλ(z, x) = f(z, x, λ). Invoking the regularity results of 
Lieberman [24] and recalling that 0 ≤ un ≤ ū for all n ≥ 1, we can find α ∈ (0, 1) and c6 > 0 such that
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un ∈ C1,α
0 (Ω) and ‖un‖C1,α

0 (Ω) ≤ c6 for all n ≥ 1.

Exploiting the compact embedding of C1,α
0 (Ω) into C1

0 (Ω) and passing to a suitable subsequence if necessary, 
we have

un → u� in C1
0 (Ω) as n → ∞.

Then, we directly obtain from (10) that

A(u�) = Nf̂λ
(u�).

Since u1 ≤ un ≤ ū for all n ≥ 1, we see that u� 
= 0 and u� ≤ ū. Therefore, u� ∈ S+
0 ⊆ intC+ (again we 

apply nonlinear regularity theory) and u� = supS+
0 . �

Now we are ready to produce the first nodal solution of problem (Pλ). We fix λ ∈ (0, λ�). Let λ� > λ1 >

λ2 > λ > 0 and let u1 = uλ1 ∈ S+
λ1
, v1 = vλ1 ∈ S−

λ1
. It is clear from hypotheses H′

2 that u1 and v1 are an 
upper solution and a lower solution of problem (Pλ), respectively. Proposition 10 implies that there exist 
u0 ∈ S+

λ , v0 ∈ S−
λ such that u1 − u0 ∈ intC+ and v1 − v0 ∈ −intC+. Invoking Proposition 11, we infer that 

problem (Pλ) has a biggest positive solution u�
1 ∈ S+

λ ∩ [v1, u1] ∩ intC+ and a smallest negative solution 
v�1 ∈ S−

λ ∩ [v1, u1] ∩ (−intC+).
Note that u1 and u�

1 are an upper solution and a lower solution of problem (Pλ2), respectively. We 
truncate the reaction term of problem (Pλ2) at {u�

1, u1} and proceed as in the proof of Proposition 10. We 
can find u2 ∈ W 1,p

0 (Ω) such that

u2 ∈ S+
λ2

∩ [u�
1, u1] ∩ intC+, u1 − u2 ∈ intC+ and u2 − u�

1 ∈ intC+. (11)

Similarly, we can find v2 ∈ W 1,p
0 (Ω) such that

v2 ∈ S−
λ2

∩ [v1, v
�
1 ] ∩ (−intC+), v1 − v2 ∈ −intC+ and v2 − v�1 ∈ −intC+. (12)

Let ρ1 = max{‖u1‖∞ , ‖v1‖∞} and let ξλρ1
be as postulated by hypothesis H′

2(v). Consider the map T1 :
W 1,p

0 (Ω) 
→ (W 1,p
0 (Ω))� defined for all u, v ∈ W 1,p

0 (Ω) by

〈T1(u), v〉 =
∫
Ω

(a(z,Du), Dv)RN dz +
∫
Ω

ξλρ1
|u|p−2

uvdz.

Then, the inverse T−1
1 : (W 1,p

0 (Ω))� 
→ W 1,p
0 (Ω) of T1 exists and it is continuous (see Motreanu-Tanaka [26, 

Proposition 9]). Let ĥ1 be the truncation of h1 at {v1, u1}, where h1(z, x) = f(z, x, λ) + ξλρ1
|x|p−2

x. We set 
Ĥ1(z, x) =

∫ x

0 ĥ1(z, t)dt and consider the C1-functional ψ1 : W 1,p
0 (Ω) 
→ R defined by

ψ1(u) =
∫
Ω

G(z,Du(z))dz +
ξλρ1

p
‖u‖pp −

∫
Ω

Ĥ1(z, u(z))dz for u ∈ W 1,p
0 (Ω).

From the proof of Proposition 10 we know that Kψ1 ⊆ [v1, u1]. Let us define a map B1 : W 1,p
0 (Ω) 
→ W 1,p

0 (Ω)
by

B1(u) = T−1
1 (ĥ1(·, u)) for u ∈ W 1,p

0 (Ω).
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By the Sobolev Embedding Theorem and the definition of ĥ1, we see that B1 is a compact operator (con-
tinuous and maps bounded sets into relatively compact sets) from W 1,p

0 (Ω) 
→ W 1,p
0 (Ω). Moreover, critical 

points of the functional ψ1 correspond to fixed points of B1. Invoking the regularity result in Lieberman 
[24, p. 320], we infer that B1(C1

0 (Ω)) ⊆ C1
0 (Ω).

Proposition 12. If hypotheses H1 and H′
2 hold and λ ∈ (0, λ�), then B1(±C+ \ {0}) ⊆ (±intC+) and 

B1([v2, u2]) ⊆ [v2, u2].

Proof. We first do the proof for u ∈ C+ \ {0}. The proof is similar for u ∈ −C+ \ {0}. Let v = B1(u). Then 
we have v ∈ C1

0 (Ω) and

−diva(z,Dv) + ξλρ1
|v|p−2

v = ĥ1(z, u) for a. a. z ∈ Ω.

As before (see the proof of Proposition 10), taking −v− ∈ W 1,p
0 (Ω) as a test function, one gets, thanks to 

Lemma 2(iii) and H′
2(v),

c1
p− 1

∥∥Dv−
∥∥p ≤

∫
Ω

(a(z,Dv),−Dv−)RN dz +
∫
Ω

ξλρ1

∣∣v−∣∣p dz

= −
∫
Ω

ĥ1(z, u)v−dz ≤ 0.

So, v− = 0 a.e. in Ω. Evidently ĥ1(·, u) 
= 0 in (W 1,p
0 (Ω))�. Then v 
= 0 due to v = T−1

1 (ĥ1(·, u)). Hence 
v ∈ C+ \ {0} (see Lieberman [24, p. 320]). Note that

−diva(z,Dv) + ξλρ1
|v|p−2

v = ĥ1(z, u) ≥ 0 for a. a. z ∈ Ω.

Then, from the maximum principle of Pucci-Serrin [34, p. 111, 120], we infer that v = B1(u) ∈ intC+.
Next, we show that B1(û) ∈ [v2, u2] for every û ∈ [v2, u2]. Indeed, we have v̂ := B1(û) ∈ C1

0 (Ω) and

−diva(z,Dv̂) + ξλρ1
|v̂| p−2v̂ = ĥ1(z, û) for a. a. z ∈ Ω. (13)

On (13) we act with w := (v̂ − u2)+ ∈ W 1,p
0 (Ω). Then, using hypothesis H′

2(v) and recalling that u2 is an 
upper solution of problem (Pλ), we have

〈A(v̂), w〉 +
∫
Ω

ξλρ1
|v̂|p−2

v̂wdz =
∫
Ω

ĥ1(z, û)wdz ≤
∫
Ω

ĥ1(z, u2)wdz

≤ 〈A(u2), w〉 +
∫
Ω

ξλρ1
|u2| p−2u2wdz,

so
〈
A(v̂) −A(u2), (v̂ − u2)+

〉
+
∫
Ω

ξλρ1
(|v̂| p−2v̂ − |u2| p−2u2)(v̂ − u2)+dz ≤ 0

and thus |{v̂ > u2}|N = 0, i.e., v̂ ≤ u2. Similarly, acting on (13) with (v2 − v̂)+ ∈ W 1,p
0 (Ω), we obtain 

v2 ≤ v̂. Therefore, v̂ ∈ [v2, u2] and B1([v2, u2]) ⊆ [v2, u2]. �
The proof of the following proposition can be shown by the argument in [7, Lemmas 3.7 and 3.8]. Thus, 

we omit the proof.
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Proposition 13. There exist a1, a2 > 0 such that, if 1 < p ≤ 2 then

〈ψ′
1(u), u−B1(u)〉 ≥ a1 ‖u−B1(u)‖2 (‖u‖ + ‖B1(u)‖)p−2, ‖ψ′

1(u)‖ ≤ a2 ‖u−B1(u)‖p−1

and if p ≥ 2 then

〈ψ′
1(u), u−B1(u)〉 ≥ a1 ‖u−B1(u)‖p , ‖ψ′

1(u)‖ ≤ a2 ‖u−B1(u)‖ (‖u‖ + ‖B1(u)‖)p−2

hold for all u ∈ W 1,p
0 (Ω).

We need to construct a special descending flow of ψ1. Since it is not assumed that B1 is locally Lipschitz 
continuous, we first construct a locally Lipschitz continuous operator A1 on X1 = W 1,p

0 (Ω) \ Kψ1 , which 
inherits the properties of B1. The next result follows from a similar argument as in [7, Lemma 4.1] and [26, 
Lemma 17] using the properties of B1 described in Propositions 12 and 13.

Proposition 14. There exists a locally Lipschitz continuous operator A1 : X1 
→ W 1,p
0 (Ω) with the following 

properties:
(i) A1(±C+ \ {0}) ⊆ (±intC+) and A1([v2, u2]) ⊆ [v2, u2];
(ii)1

2 ‖u−B1(u)‖ ≤ ‖u−A1(u)‖ ≤ 2 ‖u−B1(u)‖ for all u ∈ X1;
(iii) for all u ∈ X1 and a1 as in Proposition 13, we have

〈ψ′
1(u), u−A1(u)〉 ≥ a1

2 ‖u−B1(u)‖2 (‖u‖ + ‖B1(u)‖)p−2 if 1 < p ≤ 2,

〈ψ′
1(u), u−A1(u)〉 ≥ a1

2 ‖u−B1(u)‖p if p ≥ 2.

Using A1, we define a flow as follows. For u ∈ X1, we consider the following initial value problem in X1:{
dσ(t,u)

dt = −σ(t, u) + A1(σ(t, u)),
σ(0, u) = u.

(14)

By the theory of ordinary differential equations in Banach spaces, (14) has a unique solution in X1, still 
denoted by σ(t, u), with right maximal interval of existence [0, τ(u)). Note that ψ1(σ(t, u)) is strictly de-
creasing in t ∈ [0, τ(u)) and therefore σ(t, u)(0 ≤ t < τ(u)) is called a descending flow curve. The flow is 
given by

σ(t, u) = e−tu +
t∫

0

e−(t−s)A1(σ(s, u))ds for 0 ≤ t < τ(u).

Definition 15. (See [25]) A nonempty subset M of W 1,p
0 (Ω) is said to be invariant for the descending flow 

σ, or M is simply said to be invariant, if

{σ(t, u) : 0 ≤ t < τ(u)} ⊆ M for all u ∈ M \Kψ1 .

Theorem 16. If hypotheses H1 and H′
2 hold and λ ∈ (0, λ�), then problem (Pλ) has a sequence of nodal 

solutions {wi}i≥1 ⊆ C1
0 (Ω) \ {0}.

Proof. We introduce the following set:

D1 =
{
u ∈ C1

0 (Ω) \Kψ1 : σ(t, u) ∈ intC1(Ω) [v2, u2] for some t ∈ [0, τ(u))
}
∪ intC1(Ω) [v2, u2].
0 0
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Evidently 0 ∈ D1, and by virtue of the continuity of u → σ(t, u), we see that D1 is an open subset of C1
0 (Ω). 

As in He et al. [17], we can show that D1 and ∂D1 are invariant for the flow σ. Since ψ1 is bounded from 
below on [v2, u2], we infer that

d1 := inf
u∈[v2,u2]

ψ1(u) > −∞.

Note that for u ∈ D1, t 
→ ψ1(σ(t, u)) is decreasing. From the definition of D1, we obtain that σ(t, u) ∈
intC1

0 (Ω) [v2, u2] for some t ∈ [0, τ(u)), where u ∈ D1. Then ψ1(u) ≥ ψ1(σ(t, u)) ≥ d1 for all u ∈ D1. This 
implies that ψ1(u) is bounded from below on D1. Let v ∈ ∂D1. Then we can find a sequence {vn}n≥1 ⊆ D1
such that vn → v and ψ1(vn) → ψ1(v). It follows that there exists n0 ≥ 1 such that ψ1(vn) < ψ1(v) + 1 for 
all n ≥ n0. But ψ1(vn) ≥ d1 for all n ≥ 1. Then

inf
v∈∂D1

ψ1(v) ≥ d1 − 1.

Recalling that ψ1 is coercive, it satisfies the Palais-Smale condition on W 1,p
0 (Ω). By Theorem 2.1 of Liu-Sun 

[25], we can find w1 ∈ W 1,p
0 (Ω) such that w1 ∈ ∂D1 ∩Kψ1 . Note that w1 ∈ C1

0 (Ω) (see Lieberman [24, p. 
320]). Evidently, w1 
= 0 and w1 /∈ intC1

0 (Ω) [v2, u2]. Note that Kψ1 ⊆ [v1, u1]. As before (see the proof of 
Proposition 10), we obtain w1 ∈ intC1

0 (Ω) [v1, u1]. To sum up we have that

w1 ∈ intC1
0 (Ω) [v1, u1] and w1 /∈ intC1

0 (Ω) [v2, u2]. (15)

From (11) and (12), we have {v�1 , u�
1} ⊆ intC1

0 (Ω) [v2, u2]. By virtue of extremality of the solutions v�1 and u�
1

in [v1, u1], we conclude that w1 is nodal.
We now produce the ith nodal solution for problem (Pλ) with i = 2, 3, · · · . Let λi > λi+1 > λ, i = 2, 3, · · · . 

Invoking Proposition 11, we infer that problem (Pλ) has a biggest positive solution u�
i ∈ S+

λ ∩ [vi, ui] ∩ intC+
and a smallest negative solution v�i ∈ S−

λ ∩ [vi, ui] ∩ (−intC+). Then ui and u�
i are an upper solution and a 

lower solution of problem (Pλi+1), respectively. As before (see (11)), we can find ui+1 ∈ W 1,p
0 (Ω) such that

ui+1 ∈ S+
λi+1

∩ [u�
i , ui] ∩ intC+, ui − ui+1 ∈ intC+ and ui+1 − u�

i ∈ intC+.

Similarly, we can find vi+1 ∈ W 1,p
0 (Ω) such that

vi+1 ∈ S−
λi+1

∩ [vi, v�i ] ∩ (−intC+), vi − vi+1 ∈ −intC+ and vi+1 − v�i ∈ −intC+.

Let ρi = max{‖ui‖∞ , ‖vi‖∞} and let ξλρi
be as postulated by hypothesis H′

2(v). Consider the map Ti :
W 1,p

0 (Ω) 
→ (W 1,p
0 (Ω))� defined for all u, v ∈ W 1,p

0 (Ω) by

〈Ti(u), v〉 =
∫
Ω

(a(z,Du), Dv)RN dz +
∫
Ω

ξλρi
|u|p−2

uvdz.

Then, the inverse T−1
i : (W 1,p

0 (Ω))� 
→ W 1,p
0 (Ω) of Ti exists and it is continuous. Let ĥi be the truncation 

of hi at {vi, ui}, where hi(z.x) = f(z.x, λ) + ξλρi
|x|p−2

x. We set Ĥi(z, x) =
∫ x

0 ĥi(z, t)dt and consider the 
C1-functional ψi : W 1,p

0 (Ω) 
→ R defined by

ψi(u) =
∫
Ω

G(z,Du(z))dz +
ξλρi

p
‖u‖pp −

∫
Ω

Ĥi(z, u(z))dz for u ∈ W 1,p
0 (Ω).

Then Kψi
⊆ [vi, ui]. Let us define a map Bi : W 1,p

0 (Ω) 
→ W 1,p
0 (Ω) by
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Bi(u) = T−1
i (ĥi(·, u)) for u ∈ W 1,p

0 (Ω).

Note that Bi may merely be continuous. As before (see Proposition 14), we can show that there exists a 
locally Lipschitz continuous operator Ai on Xi = W 1,p

0 (Ω) \Kψi
such that Ai(±C+ \ {0}) ⊆ (±intC+) and 

Ai([vi+1, ui+1]) ⊆ [vi+1, ui+1]. For u ∈ Xi, we consider the following initial value problem in Xi:

{
dσ(t,u)

dt = −σ(t, u) + Ai(σ(t, u)),
σ(0, u) = u.

(16)

By ODE theory, (16) has a unique solution in Xi, still denoted by σ(t, u), with right maximal interval of 
existence t ∈ [0, τ(u)). Let

Di =
{
u ∈ C1

0 (Ω) \Kψi
: σ(t, u) ∈ intC1

0 (Ω) [vi+1, ui+1] for some t ∈ [0, τ(u))
}
∪ intC1

0 (Ω) [vi+1, ui+1].

Reasoning as above, we can find wi ∈ ∂Di ∩Kψi
such that wi is nodal and

wi ∈ intC1
0 (Ω) [vi, ui] and wi /∈ intC1

0 (Ω) [vi+1, ui+1]. (17)

By (15) and (17), we have wi 
= wk for i = 2, 3, · · · , k = 1, 2, · · · , i − 1. Hence, problem (Pλ) admits a 
sequence of nodal solutions {wi}i≥1 ⊆ C1

0 (Ω) \ {0}. This proves the Theorem 16. �
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