期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:361
Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model
Article
Blanchet, Adrien1,2  Dolbeault, Jean3  Escobedo, Miguel4  Fernandez, Javier5 
[1] Univ Toulouse, GREMAQ, CNRS, UMR 5604, F-31000 Toulouse, France
[2] Univ Toulouse, INRA 1291, F-31000 Toulouse, France
[3] Univ Paris 09, CNRS, CEREMADE, UMR 7534, F-75775 Paris 16, France
[4] Univ Basque Country, Fac Ciencias & Tecnol, Dept Matemat, Lejona 48940, Vizcaya, Spain
[5] Univ Publ Navarra, Dept Automat & Computac, Pamplona 31006, Spain
关键词: Keller-Segel model;    Chemotaxis;    Drift-diffusion;    Self-similar solution;    Intermediate asymptotics;    Entropy;    Free energy;    Rate of convergence;    Heat kernel;   
DOI  :  10.1016/j.jmaa.2009.07.034
来源: Elsevier
PDF
【 摘 要 】

The Keller-Segel system describes the collective motion of cells that are attracted by a chemical substance and are able to emit it. In its simplest form, it is a conservative drift-diffusion equation for the cell density coupled to an elliptic equation for the chemoattractant concentration. This paper deals with the rate of convergence towards a unique stationary state in self-similar variables, which describes the intermediate asymptotics of the solutions in the original variables. Although it is known that solutions globally exist for any mass less 8 pi, a smaller mass condition is needed in our approach for proving an exponential rate of convergence in self-similar variables. (c) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2009_07_034.pdf 234KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:1次