期刊论文详细信息
JOURNAL OF DIFFERENTIAL EQUATIONS 卷:267
Global stability of homogeneous steady states inscaling-invariant spaces for a Keller-Segel-Navier-Stokes system
Article
Jiang, Jie1 
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Hubei, Peoples R China
关键词: Chemotaxis;    Keller-Segel model;    Navier-Stokes equations;    Classical solutions;    Global stability;   
DOI  :  10.1016/j.jde.2019.01.022
来源: Elsevier
PDF
【 摘 要 】

In this paper, we study the global stability of homogeneous equilibria in Keller-Segel-Navier-Stokes equations in scaling-invariant spaces. We prove that for any given 0 < M < 1 + mu(1) with mu(1) being the first eigenvalue of Neumann Laplacian, the initial-boundary value problem of the Keller-Segel-Navier-Stokes system has a unique globally bounded classical solution provided that the initial datum is chosen sufficiently close to (M, M, 0) in the norm of L-d/2(Omega) x (W)over dot(1,d)(Omega) x L-d(Omega) and satisfies a natural average mass condition. Our proof is based on the perturbation theory of semigroups and certain delicate exponential decay estimates for the linearized semigroup. Our result suggests a new observation that nontrivial classical solution for Keller-Segel-Navier-Stokes equation can be obtained globally starting from suitable initial data with arbitrarily large total mass provided that volume of the bounded domain is large, correspondingly. (c) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jde_2019_01_022.pdf 435KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:1次