期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:416
Strong convergence rate in averaging principle for stochastic FitzHugh-Nagumo system with two time-scales
Article
Fu, Hongbo1  Wan, Li1  Wang, Youzhen1  Liu, Jicheng2,3 
[1] Wuhan Text Univ, Coll Math & Comp Sci, Wuhan 430073, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[3] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
关键词: Stochastic FitzHugh-Nagumo system;    Averaging principle;    Invariant measure;    Strong convergence order;   
DOI  :  10.1016/j.jmaa.2014.02.062
来源: Elsevier
PDF
【 摘 要 】

This article deals with averaging principle for stochastic FitzHugh-Nagumo system with different time-scales. Under suitable conditions, the existence of an averaging equation eliminating the fast variable for this coupled system is proved, and as a consequence, the system can be reduced to a single stochastic ordinary equation with a modified coefficient. Moreover, the rate of convergence for the slow component towards the solution of the averaging equation is of order 1/2. (c) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2014_02_062.pdf 371KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次