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1. Introduction

The FitzHugh-Nagumo (F-N) system [9,28] is a simplified version of the well-known Hodgkin—-Huxley

model [19], which describes the mechanism of the neural excitability, excitation phenomena for macro-

receptors and other natural membranes. This system has attracted a lot of interest and there is extensive

literature on mathematical analysis for it. The wellposedness and regularity of solutions for F-N system with

inhomogeneous boundary conditions are considered in [20]. Boundedness and convergence to equilibrium

for F-N system are studied in [24]. Also see Marion [27] and Shao [31] for results on long time behavior of

the system and Deng [8], Jones [21] for existence and stability of traveling waves.

Quite recently much attention has also been brought to the dynamical property of F-N system with

stochastic or random perturbations. The existence of random attractors for the stochastic F-N system
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defined on unbounded domain R™ has been studied in Wang [36]. The asymptotic limit for stochastic F-N
system with small excitability has been derived by Lv and Wang [26]. The authors show that the solution of
the stochastic F-N system subjected with additive noise converges in probability to that of the limit system.
Other topics on stochastic F-N system, such as stochastic resonance, stochastic bifurcation and stochastic
synchronization, can be found in [32,38,18,25], and the reference therein.

In this paper, we will consider the stochastic F-N system subjected with multiplicative noise that is white
in time and homogeneous in space. Let D = (0,1) C R and consider the equations

8)2(5) = —X{ (&) + Y () + o (XF ()W, (1.1)
8Y§t(€) = %8 ;2;@ +2(0(%(9) - X5(©) + %02 (X£(6), V(€)W (12)

for t > 0, & € D, with initial conditions X§(§) = Xo(€), Y5 (&) = Yp(§), and zero Dirichlet boundary
conditions, where the nonlinear function g satisfies certain dissipative conditions, o1 and oy are real-valued
functions which are assumed to be Lipschitz continuous and linear growth, the parameter ~ is a positive
number and € is a small positive parameter describing the ratio of time scale between the process X°¢
and Y. With this time scale the variable X¢ is referred as slow component and Y as the fast component.
The driving processes W& and W2 are mutually independent Wiener processes on the stochastic basis
(2,7, %, P), which will be specified later. In many cases, one is concerned with predicting time evolution
of X € in case of € is small or its asymptotic behavior under the limit € — 0. Then a reduction system for X°¢,
capturing the dynamics of the slow motion, is desirable. The main purpose of this article is to study the
asymptotic limit (¢ — 0) for slow variable X€ in the context of an averaging method. Our results show that
the asymptotic behavior can be characterized by a stochastic differential equation with averaged coeflicient.

The theory of averaging principle serves as a tool in study of the qualitative behaviors for complex systems
with multiscales. It was first studied by Bogoliubov (2], then by Gikhman [13], Volosov [35] and Besjes [1]
for a non-linear ordinary differential equations. Subsequently, the theory of averaging was developed by
Khasminskii [22] to the stochastic ordinary equations with different time-scales. The results in [22] showed
that a stochastic averaging principle occurs for the slow component in a weak sense. Taking into account
the generalized and refined results, it is worthy quoting the paper by Veretennikov [33,34], the work of
Freidlin and Wentzell [10,11] with notably extensions to convergence in probability. The mean-square type
convergence was treated in Golec and Ladde [17] and Givon and co-workers [15]. For the strong convergence,
we refer to [16] and [14]. We also refer to the recent paper by Xu, Duan and Xu [39] which deals with
averaging principle for stochastic differential equations (SDEs) with non-Gaussian Lévy noise. In particular,
the convergence order is also estimated in terms of noise intensity.

However, there are few results on the averaging principle for stochastic systems in infinite dimension
space. The recent work by Cerrai and Freidlin [6] presents an averaged result slow-fast stochastic partial
differential equations (SPDEs) with additive noise and Cerrai [5] deals with the case of multiplicative noise.
The two papers show that the averaging principle, in sense of convergence in probability without an explicit
rate, holds for that stochastic systems.

In the case that noise is of additive type, Wang and Roberts [37] show that the strong convergence
(approximation of trajectories) rate is to be 1/2 for stochastic partial differential equations with slow
and fast components. Also, Bréhier [3] obtains the weak convergence (approximation of law) rate 1 under
condition that the noise included only in the fast component. These order is the same as for SDEs (see [22,
23]).

As far as multiplicative noise is concerned, in [12] the Khasminskii technique [22] is used to prove the
strong convergence principle for SPDEs with two time scales. But the explicit order of convergence is not
presented. To this purpose, we will study the order for convergence principle uniformly in time for stochastic
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F-N system (1.1)—(1.2), which is stronger than the convergence in [6,5,37]. To be more precise, we will prove
that,

E sup [[Xf- X" =0(ve)

0<t<To
for fixed Ty > 0. Here, the norm || - || denotes the usual norm defined on Hilbert space £2(D) consisting
of square integral real valued function on the interval D = (0,1), the X, is the solution of a reduced

equation which approximates the slow component X€ in F-N system. To achieve this, a key step is to show
the existence for an invariant measure with exponentially mixing property for the fast equation, where
a dissipative condition is needed. As a result, an effective dynamics for slow equation can be derived by
averaging its parameters in the fast variable. From a technical point of view, one of the main novelties of
this paper is that we obtain an explicit rate of convergence to the averaged effective dynamics, which is
crucial for numerical analysis.

This paper is organized as follows. In Section 2 we present the framework and some preliminary results.
Section 3 deals with the ergodicity of the fast equation with frozen slow component. In Section 4, some
priori estimates are presented. These results will be utilized in the subsequent discussion. In Section 5 we
prove the strong convergence version for stochastic averaging principle with an explicit convergence order.

Throughout this paper, the letter C below with or without subscripts will denote positive constants whose
value may change in different occasions. We will write the dependence of constant on parameters explicitly
if it is essential.

2. Framework and preliminary results

Let D = (0,1) C R be an open bounded interval and H be the Hilbert space £2(D) equipped with the
inner product (-,-) g and corresponding norm || - ||. Given Ty > 0, consider the following system of stochastic
FitzHugh—Nagumo equation on the interval D with separated time scales

9XE(€)

= KO + YO + o (XFEO)WS (21)
PO R0 4 Lo ©) - X©) + zoa (X, Vi)W (2.

for ¢ > 0 with the initial conditions
X(6) = Xo(§) € H,  YG(§) =Yo(§) € H (2.3)
and boundary conditions
Ye(t,0) =Y (t,l) =0, 0<t<Typ, (2.4)

where ~y is a positive parameter, the small parameter € is positive and represents the ratio of time scale in
this system. The mapping g : R — R is a nonlinear function satisfying conditions for all £ € R

9(€)& < —ag®™ +b, (2.5)
< et +d (2.6)

and
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here a, b, c,d and A are positive constants, m is a positive integer. Note that g(&) = £(£ —2)(1/2 =€) is an
example.

Define the abstract operator A = J¢¢ with zero Dirichlet boundary condition. Let {ej}ren denote the
complete orthonormal system of eigenvectors in H such that, for k=1,2,...,

Aey, = —oyep, exlop =0,

with 0 < a1 < ag < -+ < ag < ---. Let V be the Sobolev space Hg of order 1 with Dirichlet boundary
conditions, which is densely and continuously injected in the Hilbert space H. Identifying H with its dual
space we get a Gelfand triple

VcHCV”
and
AV V™
Due to the Poincaré inequality, we have
(Av,v) = = Vo < —aulv]f?, (2.8)

where (-,-) denotes the dual pairs of (V*,V).

Next we recall the definition of Wiener process on Hilbert space H. For more details, see [30]. For i =
1,2, let {e;r}ren be eigenvectors of a nonnegative, symmetric operator (); with corresponding eigenvalues
{M\ik }ken, such that

Qieir = Nik€ik, Mg >0, keN.

Fori=1,2, let WtQi be an H valued @;-Wiener process with operator @); satisfying
TrQi = ik =pi < oo. (2.9)
k=1
Then
W ="M Biktein, t>0,
k=1

where {3; 1 (t) fC:elR;Z are independent real-valued Brownian motions on a probability base (£2, #, %#;,P). For
1 = 1,2, we recall that for an .%#;-adapted process @, satisfying the condition

T T
E [ || dt= | [|@:6)] dedt < oo,
[imare={]

the stochastic integrals

t
() = / &, W2, te0,T]
0
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is well defined [30] and has the It6 isometry:

t
E||zi(@)|* = E / .12, ds,
0
where

||@SH?Ql = Z)\i,kH@SHQa s € [OrT]
k=1

613

To give precise results, we rewrite the system (2.1)—(2.4) to abstract stochastic evolutionary equations

dX€ .

Sh = XY o (X)W

X€(0) = Xo,

ave 1, . . o, 1 ¢ vevii

o =AY+ g(YE) - X7) +$02(Xt’Yt)WtQ2’
Y(0) = Yo

with (Xo,Yp) € H x H.

(2.10)

(2.11)
(2.12)

(2.13)

To ensure the existence and uniqueness for system (2.10)—(2.13), we impose the following conditions on

diffusion coefficients:

Assumption 1. The real-valued functions oy and o5 satisfy the global Lipschitz condition, specifically, there

exist constants L,, and L., such that
2
lo1(u1) — o1 (u2)|” < Loy Jur — us|?,
2
‘0'2(”17171) — 03(uz,v2)|” < Lo, (Jur — ug]? + |v1 — v2]?)
for all uy, vy, us,v9 € R.

Remark 2.1. With Assumption 1, it immediately follows

o1 ()| < 2Lg, [uf? + 2|01 (0)
o2 0)[* < (14 0) Lo (luf* + [o]) + C,[o2(0,0)

for u,v € R and all o > 0. Thus o7 and o3 satisfy the sublinear growth condition.

(2.14)
(2.15)

(2.16)
(2.17)

We now introduce some definitions of solutions of system (2.10)—(2.13) and the results of the existence

and uniqueness. Denote by {eAt}t>0 the Cy-semigroup generated by A, then the mild solution [30] of

(2.10)—(2.13) is given by

t t
Xf=e X, +/e_7(t_s)Y; ds+/e_7(t_s)01 (X5) dwer,
0 0

t
1

Ve

t
}/te — eAt/eYO + % /eA(t—s)/e(g(Y'Se) _Xg) d8+ —/eA(t_s)/EO'Q(X;,Y;) dWSQQ
0

0
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We also recall the strong solution [7] for system (2.10)—(2.13) in the sense

t t
(X5, 0) = (Xo, 0 H+/ XS+ Y, 0) ds+/ p,01(X$)dWEY) .,
0 0

t

1
(Yte,gO)H = (YOWO)H + E /<AY;790> ds +
0

% (9(Ys) — X, ) ds—i——/ ©,02(XSYS)dWE?)

o

for any ¢ € V. Since the function g is not global Lipschitz, the classical wellposedness result [30] for
stochastic system (2.10)—(2.13) do not hold. By adapting the cutoff technique as in [4], we can show that
for every e > 0,7y > 0, Assumption 1 guarantees a unique strong solution (X¢,Y¢) € (L*(£2 x [0,To}; V) N
L2(2;C([0,Ty); H)))?, which is also a mild solution, for the system (2.10)—(2.13). Furthermore, we possess
the energy identities

t t
1x5]* = HX0H2+2/(—7X§+Y€ X°) ds+2/ yawe)
0 0

/H01 ||Q s, as. (2.18)

and
2 / 9 :
el = vl + 2 favevyas+ 2 (o) - xev7) s
0 0
t
%/( (X€ Yf) dWQ2 /HJQ Xe Ye HQ2 dS, as. (219)
0
for t > 0.

For the process of solution for the fast motion equation, we introduce the following assumption:

Assumption 2. For given Ty > 0 and some €y > 0 the solution process {Y“}ec(0,e0),¢(0,7] 1S uniform bounds
in L?(£2, H). That is, there exists a constant C such that

sup EHY:HQ <C. (2.20)
e€(0,e0),t€[0,To)

Remark 2.2. In the particular case, where oo is bounded, one has

sup  E||Ye|]P < C < . (2.21)
e€(0,1),t€[0,To]

In fact, by making use of (2.18) and (2.19) first, then taking (2.5), (2.8) and (2.9) into account, we can
deduce that

t
1 1 1 1
(I + %17) < 21Xl + 136l + Lt + 2 s as,
0
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which implies

sup  E||X{||* < O < o (2.22)
0<t<Th,0<e<1

Then taking expectation on both sides of the identity (2.19) we have

t t

t
2 2 1
vl = ol + 2 [ m(aveveyas+ 2 (o) - x6v0) s+ L [Eloa(xe v, as
0

0 0

which means

d € 2 2 € € 2 € € 2 € € 1 € € 2
Lol = Zm(ave, vy + 28 (o ). %), - 2B V), LBl (RS, 29
By invoking Poincaré inequality (2.8), condition (2.5) and the boundedness of o5, we get
2(AYSYE) 4 2(9(Y). Y0)  + o2 (X5 ¥9) [, < —20a [y [* + (2:24)

Using Young’s inequality in form of |aias|* < %+|a1|? + Cq, |az|? for the third term on the right-hand side
of (2.23), we obtain

2] (X7, ) ] < |7+ o 1 225)
By (2.23), (2.24) and (2.25) we get that

c

€

d € « € C €
Lyl < -2y + Sepxe)? +
According to (2.22), this implies that

C

d € Q €
e e (2.26)

With the aid of Gronwall’s inequality introduced in [14], the estimate (2.21) can be derived from (2.26).
This illustrates Assumption 2 is reasonable.

In order to obtain strong convergence results for averaging principle, we need to assume some dissipative
condition on fast motion equation.

Assumption 3. Assume that the growth rate of nonlinear term g and diffusion term oy in fast component
equation is smaller than the decay rate a; of A, that is

1N =201 — 2\ — paL,, > 0. (2.27)

Assumption (2.27) is interpreted as a strong dissipative condition which yields a unique invariant measure
possessing exponentially mixing property for Markov semigroup associated to fast variable equation.
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3. Ergodicity for the fast motion equation

For fixed x € H we consider the following problem associated with the fast equation with frozen slow

component
dY; ;
d_tt :AYt'i‘g(Yt) _x+02(x7}/t)WtQ27 (3'1)
YO = y. (3'2)

By arguing as before, for any fixed slow component x € H and any initial data y € H, system (3.1)—(3.2)
has a unique strong solution denoted by Y;"Y. The energy equality (2.19) reads

t t

HYtzyHZ _ ”y”z + 2/<AYTf’y,YZ’y>dS + 2/(9(Ysz,y)7ysz,y)Hd5
0 0
t t

2 /(x, Y:’y)H ds + 2/(1/;’1)?/702 (x’ytf’y) dVVSQZ)H
0 0

t
+ [lloata ), s,
0

which implies

CE|YP? = 2B(AY, ) 4 2B (g(V), Vi) - 2B Vi) 4 Ellon (o )7, (33)
From Poincaré inequality (2.8) we have
(AYPY, V) < —an [0 (3.4
By (2.5) and (2.17) in Remark 2.1 we have
2g(VI). YY) g+ oz @, Y0 [, < 0+ 0paLon (V2] + l2)) + C. (3.5)

If we choose ¢ > 0 such that p = 2a; — (1 + g)p2L,, > 0, and then take p > 0 for Young’s inequality in the
form |ayaz| < {plai|? + Cplaz|?, we obtain

1
(2, Y50) | < 2ol Y|+ Gl (3.6)
From (3.3)—(3.6), we immediately see that
d z,y]|2 p zy]|2
Lo < ~LBIve | + C(1+ )
According to Gronwall’s inequality introduced in [14], this means
E[[v|* < Cle 8 yll? + 2> +1), >0 (3.7)

for some constant C' > 0. Let Yf’y, be the solution of system (3.1)—(3.2) with initial value Yy = 3. Thanks
to (2.7), (2.8) and (2.15), it is immediate to check that for any ¢ > 0,
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Bl -y

2 2 _
< ly =y [Fe" (38)
For any = € H denote by P the Markov semigroup associated to Eqgs. (3.1)-(3.2) defined by
Py) =Ep(Y™Y), >0, y<H,

for any ¢ € B,(H) the space of bounded functions on H. We also recall a probability u* on H which is
called an invariant measure for (P;):>o if

/ Prpdp” = / Ydp®, t>0
H

H

for any bounded function ¢ € B,(H). Thanks to (3.7), by adapting the arguments used in [4] and [6], it is
possible to show that there exists a unique invariant measure p* for the semigroup P, which satisfies

/MM| *(dy) < O (1 + |l2]]?). (3.9)

Set f(z,y) := —yxr +y, x,y € H and define the averaging function

= /f(ar,y)/f(dy)

According to (3.9) we have

1f@y) — F@)|? <+ z)® + ly]?)- (3.10)

By the invariant property of u* and (3.8) we have

2

7 (e ¥e) - @ = | / P Yi) = 1w, Yio?) ()

< [ulyey - ves ez

[y #IPur(dz)
H

< Ce (1 + ||z + Nlylf?).- (3.11)
4. Some a priori estimates
In this section, we present some a priori estimates for solution processes X and Y¢.
Lemma 4.1. For any Xo, Yy € H there exists a constant C > 0 such that

sup  E||IX;|* <O+ |1 X0)?). (4.1)

0<e<e0,0<t<To

The above lemma is a direct result of energy equality (2.18) and (2.20) and so the proof is omitted.
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Lemma 4.2. For allt € [0,Tp], h € (0,1), the mean square displacement of the solution X¢ for slow equation
satisfies

sup E| X5, — X¢||° < Ch. (4.2)

0<e<ep

Proof. It is clear that for all ¢t € [0, 7], h € (0,1),

t+h t+h
fn = XP = (e - 1) X+ / e 1Y ds + / e g (XS) dW
t t
and hence
t+h

B[ X5 - X < Cle® — 1PE|XEP+ Ch [ et -9E|ye ) as
t
t+h

o / o2 (t+h—s) (1 + E||X§||2) ds,

so that, from (4.1) and (2.20),

sup  E|| X5y, — Xs||P < on

0<e<e,0<t<Ty

is obtained. O

Next, we introduce an auxiliary process (X¢, V) € H x H. Fix a positive number § < 1 and do a partition
of time interval [0, Ty] of size §. We construct a process Yte, with initial datum Y§ = Yp, by means of the
equations

1 e Ve 2 e €
%‘72()(/@5,1@)6”% ) Yis = Yis

for t € [kd, min{(k + 1)d,Tp}), k > 0, where X, and Y55 are slow and fast solution processes at time k4,
respectively. Denote |-| to be the integer function and define the process Xf by integral

dyys = %AY/; dt + %(g(f/f) — Xj,) dt +

t t
;= Xo+ [(crXi + 00 s+ [on(xs)aw
0 0

for t € [0, Tp], where s(§) = |s/d]0 is the nearest breakpoint preceding s. We will establish convergence of the
auxiliary processes Yf to the fast solution process Y, and X{ to the slow solution process X;, respectively.

Lemma 4.3. There exists a constant C > 0 such that for any t € [0,Ty] it holds
E||vy - ¥e||* < ¢s (4.3)
and

E sup || X5 X|” < co. (4.4)
0<t<To
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Proof. For t € [0, Tp] with t € [kd, (k + 1)J) we have

t
E||y; - v¢|? = 2 /E(A(Yf — Y)Y - V) ds
ké

t
2 [Blo(F) —g(¥0). i = 19) s
ko
2 t
+E/]E(X§*X]§5,Y:7Y:)Hd8
ké
t

1 € (€ € €
T /EH%(XkaaYs) _UQ(XS’YS)th ds.
kb

This show that
d € Sre |2 2 € 43 € e
TEIVE = Yo = ZEAY - YY), Y- YY)
2 N N
+ EE(Q()/;) - g(Y;EE),Y;E - Y;SE)H

2 N
+ ZE(X] - X Y - ¥

1 N
+ <Ello2 (Xi5, ¥59) = o2 (X5, Y9) [, (4.5)
From Poincaré inequality (2.8) we have
BAQY; - 7). Y5 — ¥5) < a6 - 7] (4
And by condition (2.7) we have
E(g(V) — (Y)Y = ¥) , < E[yy - v (4.7)
Also by (2.15) and (2.9) we obtain
Elo2 (Xfs. ¥i7) — 02 (X7, ¥0) [, < p2Loy (Bl| X5 — X7 |* + B[V — ")
< OS5+ paLo, BV - Y|, (4.8)

where we used (4.2) in the second inequality since ¢ € [kd, (k+1)d). Then by taking n = 201 —2A—p2 Ly, > 0
for Young’s inequality in the form of |ab| < %|a|* 4+ Cy[b|* we obtain

BJ(Xf — X, Yy = ¥) | < JE|YS = V|| + G|l 5 - X5
<o+ gEHy; -y (4.9)

By taking (4.5), (4.6), (4.7), (4.8) and (4.9) into account, we get

d € Cre |2 n € Cre||2 d
%EHYt—Yt <—2—€IEJ||Yt—Yt +C-
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and then, due to Gronwall’s inequality presented in [14], we have
E|lv; ~ i < ca

Therefore the first assertion follows. As for the second estimate, we have by Hoélder’s inequality and the
Burkholder inequality that

|2ds.

To To
E sup [ X - Xf|” < C/E||X§ — X&) ds + O/]E||Y; — Y
0<t<To ) )

Using (4.2) and the first estimate (4.3), we immediately get the desired second estimation. O
5. Averaging principle

In this section we will consider the effective dynamical system

O~ (X + o (KW, (5.1)
Xo = Xo (5.2)
with
fo) = [ rewuay, wen
H
where f(z,y) = —va + y and p* denotes the unique invariant measure for system (3.1)—(3.2) introduced in

Section 3. Moreover, due to [6], the mapping f : H — H is Lipschitz continuous. Our aim here is proving
the main result of this paper. Namely, we are going to verify that the sequence {X§: t > 0}c>0 converges
to the solution process {X;: ¢ > 0} of the averaged system (5.1)(5.2) in space L*(£2,C([0,Tp); H)) as ¢
goes to zero. To this end, we shall explore the difference between the solution of the averaged equation and
the auxiliary process Xf Next, by the construction of )A’te and a time shift transformation, we have for any
fixed k and s € [0, ) the equalities

kd+s
Ase+k6 _ €AS/€Y]§5 + % / 6A(k6+sfr)/e (Q(Y:) _ X;é) dr
ké

1 kd+s
+ % / eA(k6+s—7-)/eo_2 (Xli(;,Y:) dWTQ2
ké

S

— ey L[ Ao 75, 00) - Xi) b
0

1] .
4z [ ey (X, Ts) W, (5.3)
Ve
0

where Wt*Qz = Wg_zk 5 W,S;z is the shift version of Wth and hence they have the same distribution. Let
W be a Wiener process defined on the same stochastic basis and independent of Wth and WtQZ. Construct
a process Y Xks:Y%s by means of
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s/e
oS — eteteyg g [ Al (g(yXio o) - Xgy) ar
0
s/e
+/eA(s/e—r)Uz(X’ié,erzé,ypfa)dWr
0

S

_ eAS/CYke(S + %/eA(sfr)/e(g(Y)/{Iz&Y/fs) _ X;(;) dr

T/E
U [ aeenye ¢ yXisYis\ g
+ \/E/ef“ Voo (Xis, Y, 0 M) AW, (5.4)

where ﬁ/z = \/eW,,. is the scaled version of W;. By comparison, (5.3) and (5.4) yield
(X1257§%9+k5) ~ (XZ&YS)/(E&’YI:&)u s e [076)7

where ~ denotes coincidence in distribution sense. Set

. 0<k<|To/d) -1,

9
= 5| [ (7 (66 V) ~ (i) as
0

then we state the critical lemma, which will be used later.
Lemma 5.1. Suppose that Assumptions 1-3 hold, then there exists a constant C > 0 such that
JE<Coe, 0< k< |To/d] — 1. (5.5)

Proof. Let QY denote the probability law of the diffusion process {Y;*: t > 0} which is governed by differ-
ential equation

dYr =AY dt + (g(th) - x) dt + o9 (x, Yt””) dW;.

When its initial value is Y = y and we denote the solution by Y;""Y. The expectation with respect to QY
is denoted by EY. Hence we have

EY (v (Yy")) = E(e(¥"))

for all bounded function . For more details on QY the readers are referred to [29]. First we note that it is
easy to show that J < oo, k =0,1,...,|Ty/d| — 1. Let {ex}ren be an orthonormal basis of H. Then by
the Fourier expansion and the Fubini theorem, we see that

00 2

Ji=>E
i=1

Xké’YkJ

)
J s Vi) = F (X))
0

i=1

6 0
=2 [ [ SR V) = F(Xis) ) (F (X Y75) = F(XE) 1) ds
0

T
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k=0,1,...,|To/0] — 1. For i = 1,2, ..., define

Ji(TaS’xvy) = E[(f(x’}/sm,y) - f(x),ei)H(f(m7YTm’y) - f_(‘r),ei)H]'

It follows from the Markov property of ¥;"¥ that

Ty, s,,y) = BY{BY[(f (2, Y7) = f(2), &) (f (2, V) — f() i)yl 7]}
=EY{(f(z, V) - f(x),e:) y x B [(f (2, YE,) = fla),ei) ) b

for i = 1,2,..., where .7 denotes the o-field generated by {Y,%; r < t}, EY=""[(f(z,YZ ) — f(x),e)]
means the function EY[(f(z,Y® ) — f(2),e;)] evaluated at §j = Y;*¥. Therefore the Holder inequality yields

oo

S il s,ay) < {BY)| @, ¥2) = F@)|*YHE (B ( (2. Y2,)) = @) [5ye)

i=1
which, with aid of (3.7), (3.10) and (3.11), implies that

oo

S il s, ay) < CLEY||f (2, Y7) = F@)|P} 2 {EY (1 + ) + Y2 |) - e} 2

i=1

C(1+ o2 + lyl?)e 36, (5.6)

Let M, be the o-field generated by X and Y5, which is independent of {Y;*¥: r > 0}. By adapting the
approach in [29] (Theorem 7.1.2) we can deduce from (5.6) and Lemma 4.1 that

9 oo
/ZE(E[(f(Xiav Y ) = F(Xs) o). (F (Xis Y00100) = F(Xs) e1) | Mis]) ds dr

] dsdr

(Z Ji(T/e€, s/e,x,y))

(x,y):(X;s,Yk‘s)

which completes the proof. O

Lemma 5.2. Suppose that Assumptions 1-3 are satisfied. Then for any Ty > 0, we have

t

B sw | [(F(Xi ) - F(X2)) ds

0<t<T J

2

< C<6+ g) (5.7)

where C is a constant independent of (e, 9).
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Proof. Notice that for any ¢ € [0,Tp), there exists an ny = |¢/d] such that ¢t € [n:d, (ns+1)d ATp). Therefore,
we have representation in the form

[

where

1 (k1)

Li(te) = (f (Xis: Vi) = F(Xi5)) ds,
k=0 s
ne—1 (k+1)8 n¢d

Iy(t,e) = (F(X55) — F(X5)) ds = /(f(X§<6>) - f(X:
k=0 ks 0
t

Bt = [ (7(X;,5.¥) ~ F(X0)) ds.

>

nt

(5),}7;) — f(X$))ds == Li(t,€) + La(t, €) + I3(t,€),

Concerning I5(t, €), we have the inequalities

E sup ng(t,e)H2<CE sup
0<t<Ty

n:d

X5 — X<||*ds

0<t<Ty
0

Ty
< C/]E||X;(5) — X¢||* ds
0
s

<

(5.8)

))ds,

(5.9)

for Ty > 0, where the last inequality is due to (4.2). We proceed next to the estimation of I5(¢,¢€). Set

f(x)=/yu“’(dy), r € H,

H

which, according to (3.9), possesses property

then

IF@))* <c@+llal?), «ecH,

f(z) = —yz + f(a).

For all Ty > 0, we have by (5.11) and Holder’s inequality the estimate

E sup ||I3(t,e)”2<

0<t<To

t
0CE sup / ||Xft/5J57X§||2ds+5CE sup
0<t<To 0<t<To
1t/5]6
t
1+ 5CE sup / (X9 ds.
0<t<To

[t/5]5

(5.10)
(5.11)
[ 5| as
[t/5]6
(5.12)
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Let us denote by I3(Ty, €), 12(To, €), I3(Tp, €) the three terms in the right hand side of (5.12

We observe that

ks <t<(k+1)3,
0<k<|To /8] —1 ké

t
1Ty, €) <5CJE{ max /|\X,§5—X;|\2ds}

t
€ ell2
”OE{LM;?%@O | I Xtagsgs - X ds}

[To/0]6

1 T0/6)—1 (k1) To

<ic Y[ ElXg-XiPdseoc [ B - X ds

ks (To/8]5
By (4.2), the above inequality yields

| To /6] —1 (k+1)5 To
I}(Ty,€) < 6C Z /6ds+60 / bds
kS |To/6]6
< C6.

Repeating the same argument used in the estimation of I3 (Tp, €), it follows that

|To/s)—1 (419 o

I3(Th.¢) < 6C Z /JE||3>;||2ds+5c / ||V ds.

ko [To/8]
Note that we can easily deduce the auxiliary process V¢ possess the property

<o

sup sup E
0<e<eo 0<t<To

for some constant C' > 0. Hence (5.14) yields
I3(Ty, €) < CO.

Using (5.10) and (4.1) we can deduce
¢
I3(Ty,e) < SCE sup / (1+ || X¢|1%) ds

0<t<To
[t/6]6

< Cp? +5C/]EHX§H2ds
0

Collecting together (5.12), (5.13), (5.15) and (5.16) we obtain

E sup ng,(t,e)H2 < C6.
0<t<To

), respectively.

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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Concerning I (t, €), we can deduce

lt/5]—1 (k1) 2

B sup 160l < sup (F (X5 ¥2) = F(X) s
0<t< T o<i<to|| = J
Lt/s]—1| (k+1)o 9
g E s t (5 X Y, £ X
ogl?n{uj kZ:O A k0 Y5) = F(X55)) ds }
e [ To/8]—1 (k+1)6 ) 9
ST X B | U T) - (X)) ds
k=0 ks
(k+1)8 )
72 E ]
S 52 ocdlRoys 1 / (f (Xi5 Vi) = F(Xi5)) ds
ko
2
:To E / F(X5 ) = F(X5s)) ds
02 O<k<LTU/5J 1 ks> s+k6 ko
0
C p 2
= — Xk Vi .
e ogksnt%%JAE / (Xis, Y& = £(Xis5)) ds
0

C
- max
02 0<k<|To/8) -1

Taking (5.5) into account, we can deduce that

E sup Lo < O3,
0<t< T,

which, taking into account (5.8), (5.9) and (5.17), gives

t

/ o V) = F(0)) s

E sup
0<t<To

The proof is completed. O

Lemma 5.3. Suppose that Assumptions 1-3 hold, then there exists a constant C such that
E sup || Xf- X7 < <5+ g) (5.18)

0<t<T)

Proof. For any ¢ € [0,Tp] we write

Xf— X =) Ai(), (5.19)

where
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Using Holder’s inequality, the Burkholder—-Davis—Gundy inequality and (4.4) we obtain

E sup HAz(t)HQ—HE sup ||A4(t)H2<C]E sup /HX;—X;Hst
0<t< Ty 0<t< Ty 0SI<Ty )

<CE sup ||X; - X¢|

0<t<To
< C6.
It is also easy to see that, for any u € [0, Tp], the estimation
E sup HAg H 4+ E sup HA5 < CE sup /HXE X, H ds
oty oty o<ty

< O/E sup || X — X, || ds.

0<r<s

Form (5.7), (5.19), (5.20) and (5.21), we have for all u € [0, Tp],

E sup | X7 X[ < G+E>+0/Ebwux X s,
o<ty 0 0 o<r<

which, with aid of Gronwall’s inequality, yields

Eswuﬁ—&W<CG+a.

0<t<To

The proof is completed. O

With Lemma 4.3 and Lemma 5.3 in hand, we now formulate the main result in this paper.

(5.20)

(5.21)
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Theorem 5.1. Suppose that Assumptions 1-3 hold and Xo,Yy € H, then we have the stochastic averaging
principle with convergence rate 1/2, that is,

E sup [|X;— XtHQ = O(Ve).

0<t<To

Proof. Thanks to (4.4) and (5.18) we obtain

E sup |[X¢— | <c(a+f).
0<t<To

Taking § = /€ in above inequality, we get

E sup [[X;-X|° <Cve,
0<t<To

which completes the proof. O

Remark 5.1. It should be stressed that we have confined ourselves to the case the diffusion coefficient of
the slow variable do not depend on the fast variable, that is, o1(x,y) = o1(z). In fact, a simple example
(see [14]) can show that for slow-fast system, strong convergence does not hold where the noise coefficient
of the slow variable depends on fast variable.
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