JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:395 |
On Liouvillian integrability of the first-order polynomial ordinary differential equations | |
Article | |
Gine, Jaume1  Llibre, Jaume2  | |
[1] Univ Lleida, Dept Matemat, Lleida 25001, Catalonia, Spain | |
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain | |
关键词: Liouvillian integrability; Invariant algebraic curve; Riccati differential equation; Abel differential equation; | |
DOI : 10.1016/j.jmaa.2012.05.072 | |
来源: Elsevier | |
【 摘 要 】
Recently, the authors provided an example of an integrable Liouvillian planar polynomial differential system that has no finite invariant algebraic curves; see Gine and Llibre (2012) [8]. In this note, we prove that, if a complex differential equation of the form y' = a(0)(x) +a(1) (x)y + ... + a(n) (x)y(n), with a(i)(x) polynomials for i = 0, 1,..., n, a(n)(x) not equal 0, and n >= 2, has a Liouvillian first integral, then it has a finite invariant algebraic curve. So, this result applies to Riccati and Abel polynomial differential equations. We shall prove that in general this result is not true when n = 1, i.e., for linear polynomial differential equations. (C) 2012 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2012_05_072.pdf | 195KB | download |