期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:452
Non-integrated defect relation for meromorphic maps from a Kahler manifold intersecting hypersurfaces in subgeneral of Pn(C)
Article
Si Duc Quang1,2  Nguyen Thi Quynh Phuong1  Nguyen Thi Nhung3 
[1] Hanoi Natl Univ Educ, Dept Math, 186 Xuan Thuy, Hanoi, Vietnam
[2] Thang Long Inst Math & Appl Sci, Hanoi, Vietnam
[3] Thang Long Univ, Dept Math, Hanoi, Vietnam
关键词: Nevanlinna;    Second main theorem;    Meromorphic mapping;    Non-integrated defect relation;   
DOI  :  10.1016/j.jmaa.2017.03.049
来源: Elsevier
PDF
【 摘 要 】

In this article, we establish a truncated non-integrated defect relation for meromorphic mappings from an m-dimensional complete Kahler manifold into P-n(C) intersecting q hypersurfaces Q(1), .., Q(q) in k-subgeneral position of degree d(i), i.e., the intersection of any k + 1 hypersurfaces is emptyset. We will prove that (q)Sigma(i=1) delta([u-1])(f) (Q(i)) <= (k - n +1) (n + 1) + epsilon + rho u(u - 1)/d, where u is explicitly estimated and d is the least common multiple of d(i)'s. Our result generalizes and improves previous results. In the last part of this paper we will apply this result to study the distribution of the Gauss map of minimal surfaces. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2017_03_049.pdf 415KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次