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NON-INTEGRATED DEFECT RELATION FOR MEROMORPHIC
MAPS FROM A KÄHLER MANIFOLD INTERSECTING

HYPERSURFACES IN SUBGENERAL OF P
n(C)

SI DUC QUANG, NGUYEN THI QUYNH PHUONG, AND NGUYEN THI NHUNG

Abstract. In this article, we establish a truncated non-integrated defect relation for
meromorphic mappings from an m-dimensional complete Kähler manifold into P

n(C)
intersecting q hypersurfaces Q1, ..., Qq in k-subgeneral position of degree di, i.e., the
intersection of any k + 1 hypersurfaces is emptyset. We will prove that

q∑
i=1

δ
[u−1]
f (Qi) ≤ (k − n+ 1)(n+ 1) + ε+

ρu(u− 1)

d
,

where u is explicitly estimated and d is the least common multiple of d′is. Our result
generalizes and improves previous results. In the last part of this paper we will apply
this result to study the distribution of the Gauss map of minimal surfaces.

1. Introduction and Main result

Let M be a complete Kähler manifold of dimension m. Let f : M −→ P
n(C) be a

meromorphic mapping and Ωf be the pull-back of the Fubini-Study form Ω on P
n(C) by

f . For a positive integer μ0 and a hypersurface D of degree d in P
n(C) with f(M) �⊂ D,

we denote by νf (D)(p) the intersection multiplicity of the image of f and D at f(p).

In 1985, H. Fujimoto [5] defined the notion of the non-integrated defect of f with respect
to D truncated to level μ0 by

δ
[μ0]
f := 1− inf{η ≥ 0 : η satisfies condition (∗)}.

Here, the condition (*) means that there exists a bounded non-negative continuous func-
tion h on M whose order of each zero is not less than min{νf (D), μ0} such that

dηΩf +

√−1

2π
∂∂̄ log h2 ≥ [min{νf (D), μ0}].

And then he gave a result analogous to the defect relation in Nevanlinna theory as follows.

Theorem A (see [5, Theorem 1.1]). Let M be an m-dimensional complete Kähler
manifold and ω be a Kähler form of M. Assume that the universal covering of M is
biholomorphic to a ball in C

m. Let f : M → P
n(C) be a meromorphic map which is

linearly nondegenerate (i.e., its image is not contained in any hyperplane of Pn(C)). Let

2010 Mathematics Subject Classification: Primary 32H30, 32A22; Secondary 30D35.
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H1, · · · , Hq be hyperplanes of Pn(C) in general position. For some ρ ≥ 0, if there exists a
bounded continuous function h ≥ 0 on M such that

ρΩf + ddc log h2 ≥ Ric ω,

then
q∑

i=1

δ
[n]
f (Hi) ≤ n+ 1 + ρn(n+ 1).

Recently, M. Ru-S. Sogome [10] generalized Theorem A to the case of meromorphic
mappings intersecting a family of hypersurfaces in general position. After that, Q. Yan [12]
extended Theorem A by consider the case where the family of hypersurfaces in subgeneral
position. He proved the following.

Theorem B (see [12, Theorem 1.1]). Let M be an m-dimensional complete Kähler
manifold and ω be a Kähler form of M. Assume that the universal covering of M is
biholomorphic to a ball in C

m. Let f be an algebraically nondegenerate meromorphic map
of M into P

n(C). Let Q1, ..., Qq be hypersurfaces in P
n(C) of degree PIj, in k-subgeneral

position in P
n(C). Let d = l.c.m.{Q1, ..., Qq} (the least common multiple of {Q1, ..., Qq}).

Denote by Ωf the pull-back of the Fubini-Study form of Pn(C) by f. Assume that for some
ρ ≥ 0, there exists a bounded continuous function h ≥ 0 on M such that

ρΩf + ddc log h2 ≥ Ric ω.

Then, for each ε > 0, we have

q∑
j=1

δ
[u−1]
f (Qj) ≤ k(n+ 1) + ε+

ρu(u− 1)

d
,

where u =
(N+n

n

)≤ (3ekdI(ε−1))n(n+ 1)3n and N = 2kdn2(n+ 1)2I(ε−1).

Here, for a real number x, we define I(x) := min{a ∈ Z ; a > x}.
However, the above result of Q. Yan does not yet completely extend the results of H.

Fujimoto and M. Ru-S. Sogome. Indeed, when the family of hypersurfaces in general
position, i.e., k = n, the first term in the right hand side of the defect relation inequality
is n(n+1), which is bigger than (n+1) as usual. Recently, T. V. Tan and V. V. Truong in
[11] also gave a non-integrated defect relation for the family of hypersurfaces in subgeneral
position, where this term is equal to n+ 1. But their definition of “subgeneral position”
is quite special, which has an extra condition on the intersection of these q hypersurfaces
(see Definition 1.1(ii) in [11])

The first aim of this paper is to establish a non-integrated defect relation for meromor-
phic mappings of complete Kähler manifolds into P

n(C) sharing hypersurfaces located
in subgeneral position which generalizes the above mentioned results and improves the
result of Q. Yan. In usual principle, to treat with the case of family of hypersurfaces in
subgeneral position, we need to generalize the notion of Nochka weights. However for
the case of hypersurfaces, there is no Nochka weights constructed. In order to over come
this difficult, we will use a technique “replacing hypersurfaces” proposed in [8, 9]. Before
stating our result, we recall the following.
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Let k ≥ n and q ≥ k + 1. Let Q1, ..., Qq be hypersurfaces in P
n(C). The hypersurfaces

Q1, ..., Qq are said to be in k-subgeneral position in P
n(C) if

Qj1 ∩ · · · ∩Qjk+1
= ∅ for every 1 ≤ j1 < · · · < jk+1 ≤ q.

If {Qi}qi=1 is in n-subgeneral position then we say that it is in general position.

Our main result is stated as follows.

Theorem 1.1. Let M be an m-dimensional complete Kähler manifold and ω be a Kähler
form of M. Assume that the universal covering of M is biholomorphic to a ball in C

m. Let f
be an algebraically nondegenerate meromorphic map of M into P

n(C). Let Q1, ..., Qq be hy-
persurfaces in P

n(C) of degree dj, in k-subgeneral position in P
n(C). Let d = l.c.m.{d1, ..., dq}

(the least common multiple of {d1, ..., dq}). Assume that for some ρ ≥ 0, there exists a
bounded continuous function h ≥ 0 on M such that

ρΩf + ddc log h2 ≥ Ric ω.

Then, for each ε > 0, we have
q∑

j=1

δ
[u−1]
f (Qj) ≤ p(n+ 1) + ε+

ρu(u− 1)

d
,

where p = k − n + 1, u =
(N+n

n

)≤ en+2(dp(n + 1)2I(ε−1))n and N = (n + 1)d + p(n +

1)3I(ε−1)d.

Then we see that, if the family of hypersurfaces is in general position, i.e., k = n, then
our result deduces the results of H. Fujimoto and also of M. Ru-S. Sogome. Of course,
compaired to the original form of Cartan-Nochka’s theorem where the first term in the
right hand side of the defect relation inequality is (2k − n+ 1), our result is still not yet
optimal. Therefore, how to give a sharp defect relation in this case is an open question.

In the above theorem, letting ε = 1+ ε′ with ε′ > 0 and then letting ε′ −→ 0, we obtain
the following corollary.

Corollary 1.2. With the assumption of Theorem 1.1, we have
q∑

j=1

δ
[u−1]
f (Qj) ≤ p(n+ 1) + 1 +

ρu(u− 1)

d
,

where p = k − n+ 1, u =
(N+n

n

)≤ en+2(dp(n+ 1)2)n and N = (n+ 1)d(1 + p(n+ 1)2).

In the last part of this paper, we will apply Theorem 1.1 to give a non-integrated defect
relation of the Gauss map of a regular submanifold of Cm (see Theorem 4.2 below).

2. Basic notions and auxiliary results from Nevanlinna theory

2.1. Counting function. We set ||z|| = (|z1|2+ · · ·+ |zm|2
)1/2

for z = (z1, . . . , zm) ∈ C
m

and define

B
m(r) := {z ∈ C

m : ||z|| < r},
S(r) := {z ∈ C

m : ||z|| = r} (0 < r < ∞).
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Define

vm−1(z) :=
(
ddc||z||2)m−1

and

σm(z) := dclog||z||2 ∧ (ddclog||z||2)m−1
on C

m \ {0}.
For a divisor ν on a ball Bm(R) of Cm, with R > 0, and for a positive integer M or

M = ∞, we define the counting function of ν by

ν [M ](z) = min {M, ν(z)},

n(t) =

⎧⎪⎨
⎪⎩
∫

|ν| ∩Bm(t)

ν(z)vm−1 if m ≥ 2,∑
|z|≤t

ν(z) if m = 1.

Similarly, we define n[M ](t).

Define

N(r, r0, ν) =

r∫
r0

n(t)

t2m−1
dt (0 < r0 < r < R).

Similarly, define N(r, r0, ν
[M ]) and denote it by N [M ](r, r0, ν).

Let ϕ : Cm −→ B
m(r) be a meromorphic function. Denote by νϕ the zero divisor of ϕ.

Define

Nϕ(r, r0) = N(r, r0, νϕ), N [M ]
ϕ (r, r0) = N [M ](r, r0, νϕ).

For brevity, we will omit the character [M ] if M = ∞.

2.2. Characteristic function and first main theorem. Let f : Bm(R) −→ P
n(C) be

a meromorphic mapping. For arbitrarily fixed homogeneous coordinates (w0 : · · · : wn)

on P
n(C), we take a reduced representation f̃ = (f0, . . . , fn), which means that each fi

is a holomorphic function on B
m(R) and f(z) =

(
f0(z) : · · · : fn(z)

)
outside the analytic

subset {f0 = · · · = fn = 0} of codimension ≥ 2. Set ‖f̃‖ =
(|f0|2 + · · ·+ |fn|2

)1/2
.

The characteristic function of f is defined by

Tf (r, r0) =

∫ r

r0

dt

t2m−1

∫
Bm(t)

f ∗Ω ∧ vm−1, (0 < r0 < r < R).

By Jensen’s formula, we will have

Tf (r, r0) =

∫
S(r)

log ‖f‖σm −
∫

S(r0)

log ‖f̃‖σm +O(1), (as r → R).

Let Q be a hypersurface in P
n(C) of degree d. Throughout this paper, we sometimes

identify a hypersurface with the defining polynomial if there is no confusion. Then we
may write

Q(ω) =
∑
I∈Td

aIω
I ,
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where Td = {(i0, ..., in) ∈ Z
n+1
+ ; i0 + · · · + in = d}, ω = (ω0, ..., ωn), ω

I = ωi0
0 ...ω

in
n with

I = (i0, ..., in) ∈ Td and aI (I ∈ Td) are constants, not all zeros. In the case d = 1, we call
Q a hyperplane of Pn(C).

The proximity function of f with respect to Q, denoted by mf (r, r0, Q), is defined by

mf (r, r0, Q) =

∫
S(r)

log
||f̃ ||d
|Q(f̃)|σm −

∫
S(r0)

log
||f̃ ||d
|Q(f̃)|σm,

where Q(f̃) = Q(f0, ..., fn). This definition is independent of the choice of the reduced
representation of f .

We denote by f ∗Q the pullback of the divisor Q by f . We may see that f ∗Q identifies
with the zero divisor ν0

Q(f̃)
of the function Q(f̃). By Jensen’s formula, we have

N(r, r0, f
∗Q) = NQ(f̃)(r, r0) =

∫
S(r)

log |Q(f̃)|σm −
∫
S(r0)

log |Q(f̃)|σm.

Then the first main theorem in Nevanlinna theory for meromorphic mappings and hyper-
surfaces is stated as follows.

Theorem 2.1 (First Main Theorem). Let f : Bm(R) → P
n(C) be a holomorphic map,

and let Q be a hypersurface in P
n(C) of degree d. If f(C) �⊂ Q, then for every real number

r with r0 < r < R,

dTf (r, r0) = mf (r, r0, Q) +N(r, r0, f
∗Q) +O(1),

where O(1) is a constant independent of r.

If lim
r→1

sup
T (r, r0)

log 1/(1− r)
= ∞, then the Nevanlinna’s defect of f with respect to the

hypersurface Q truncated to level l is defined by

δ
[l]
f,∗(Q) = 1− lim sup

N l(r, r0, f
∗Q)

Tf (r, r0)
.

There is a fact that

0 ≤ δ
[l]
f (Q) ≤ δ

[l]
f,∗(Q) ≤ 1.

(See Proposition 2.1 in [10])

2.3. Auxiliary results. Repeating the argument in [5, Proposition 4.5], we have the
following.

Proposition 2.2. Let F0, . . . , FN be meromorphic functions on the ball Bm(R0) in C
m

such that {F0, . . . , FN} are linearly independent over C. Then there exists an admissible
set

{αi = (αi1, ..., αim)}Ni=0 ⊂ Z
m
+

with |αi| =
∑m

j=1 |αij| ≤ i (0 ≤ i ≤ N) such that the following are satisfied:

(i) Wα0,...,αN
(F0, . . . , FN)

Def
:= det (Dαi Fj)0≤i,j≤N �≡ 0.

(ii) Wα0,...,αN
(hF0, . . . , hFN) = hN+1Wα0,...,αN

(F0, . . . , FN) for any nonzero meromorphic
function h on B

m(R0).
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In [10], M. Ru and S. Sogome gave the following lemma on logarithmic derivative for
the meromorphic mappings of a ball in C

m into P
n(C).

Proposition 2.3 (see [10, Proposition 3.3]). Let L0, . . . , LN be linear forms of N + 1
variables and assume that they are linearly independent. Let F be a meromorphic mapping
of the ball Bm(R0) ⊂ C

m into P
N(C) with a reduced representation F̃ = (F0, . . . , FN) and

let (α0, . . . , αN) be an admissible set of F . Set l = |α0| + · · · + |αN | and take t, p with
0 < tl < p < 1. Then, for 0 < r0 < R0, there exists a positive constant K such that for
r0 < r < R < R0,∫

S(r)

∣∣∣∣zα0+···+αN
Wα0,...,αN

(F0, . . . , FN)

L0(F̃ ) . . . LN(F̃ )

∣∣∣∣
t

σm ≤ K

(
R2m−1

R− r
TF (R, r0)

)p

.

Here zαi = zαi1
1 ...zαim

m , where αi = (αi1, ..., αim) ∈ N
m
0 .

3. Non-integrated defect relation for nondegenerate mappings sharing

hypersurfaces in subgeneral position

First of all, we need the following lemma due to [8, 9]. For the sake of completeness, we
also include the proofs.

Lemma 3.1 (see [8, Lemma 3.1], [9, Lemma 3.1]). Let Q1, ..., Qk+1 be hypersurfaces in
P
n(C) of the same degree d ≥ 1, such that(

k+1⋂
i=1

Qi

)
= ∅.

Then there exist n hypersurfaces P2, ..., Pn+1 of the forms

Pt =
k−n+t∑
j=2

ctjQj, ctj ∈ C, t = 2, ..., n+ 1,

such that
(⋂n+1

t=1 Pt

)
= ∅, where P1 = Q1.

Proof. Set P1 = Q1. It is easy to see that

dim

(
t⋂

i=1

Qi

)
≤ k − t+ 1, t = k − n+ 2, ..., k + 1,

where dim ∅ = −∞.

Step 1. We firstly construct P2 as follows. For each irreducible component I of dimension
n− 1 of P1, we put

V1I = {c = (c2, ..., ck−n+2) ∈ C
k−n+1 ; I ⊂ Qc, where Qc =

k−n+2∑
j=2

cjQj}.

Here, we also consider the case where Qc may be zero polynomial and it determines all

P
n(C). It easy to see that V1I is a subspace of Ck−n+1. Since dim

(⋂k−n+1
i=0 Qi

)
≤ k − 2,

there exists i(1 ≤ i ≤ k − n + 1) such that I �⊂ Qi. This implies that V1I is a proper
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subspace of Ck−n+1. Since the set of irreducible components of dimension k − 1 of P0 is
finite,

C
k−n+1 \

⋃
I

V1I �= ∅.

Then, there exists (c12, ..., c1(k−n+2)) ∈ C
k−n+1 such that the hypersurface

P2 =
k−n+2∑
j=2

c1jQj

does not contain any irreducible component of dimension k − 1 of P1. This implies that
dim (P1 ∩ P2) ≤ k − 2.

Step 2. Similarly, for each irreducible component I ′ of dimension n−2 of (P1 ∩ P2), put

V2I′ = {c = (c2, ..., ck−n+3) ∈ C
k−n+2 ; I ′ ⊂ Q′

c, where Q′
c =

k−n+3∑
j=2

cjQj}.

Hence, V2I′ is a subspace of Ck−n+2. Since dim
(⋂k−n+3

i=1 Qi

)
≤ n− 3, there exists i, (2 ≤

i ≤ k − n + 3) such that I ′ �⊂ Qi. Hence V2I′ is a proper subspace of Ck−n+2. Since the
set of irreducible components of dimension n− 2 of (P1 ∩ P2) is infinite,

C
k−n+2 \

⋃
I′

V2I′ �= ∅.

Then, there exists (c22, ..., c2(N−k+3)) ∈ C
k−n+2 such that the hypersurface

P3 =
k−n+3∑
j=2

c2jQj

does not contain any irreducible components of dimension n − 2 of P1 ∩ P2. Hence
dim (P1 ∩ P2 ∩ P3) ≤ n− 3.

Repeating again the above steps, after the n-th step we get the hypersurfaces P2, ..., Pn+1

satisfying that

dim

(
t⋂

j=1

Pj

)
≤ n− t.

In particular,
(⋂n+1

j=1 Pj

)
= ∅. The lemma is proved. �

Let f : M −→ P
n(C) be a meromorphic mapping with a reduced representation f̃ =

(f0, . . . , fn). We define

Qi(f̃) =
∑
I∈Id

aiIf
I ,

where f I = f i0
0 · · · f in

n for I = (i0, ..., in). Then we can consider f ∗Qi = νQi(f̃)
as divisors.

We now have the following.
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Lemma 3.2. Let {Qi}i∈R be a family of hypersurfaces in P
n(C) of the common degree d

and let f be a meromorphic mapping of Cm into P
n(C). Assume that

⋂
i∈R Qi = ∅. Then,

there exist positive constants α and β such that

α||f̃ ||d ≤ max
i∈R

|Qi(f̃)| ≤ β||f̃ ||d.

Proof. Let (x0 : · · · : xn) be homogeneous coordinates of Pn(C). Assume that each Qi is
defined by

∑
I∈Id aiIx

I = 0.

Set Qi(x) =
∑

I∈Id aiIx
I and consider the following function

h(x) =
maxi∈R |Qi(x)|

||x||d ,

where ||x|| = (
∑n

i=0 |xi|2) 1
2 .

Since the function h is positive continuous on P
n(C), by the compactness of Pn(C), there

exist positive constants α and β such that α = minx∈Pn(C) h(x) and β = maxx∈Pn(C) h(x).
Therefore, we have

α||f̃ ||d ≤ max
i∈R

|Qi(f̃)| ≤ β||f̃ ||d.
The lemma is proved. �

By Jensen’s formula, we have the following lemma.

Lemma 3.3. Let {Li}ui=1 be a family of hypersurfaces in P
n(C) of the common degree

d and let f be a meromorphic mapping of Bm(R0) ⊂ C
m into P

n(C), where u =
(
n+d
n

)
.

Assume that {Li}ui=1 are linearly independent. Then, for every 0 < r0 < r < R0, we have

TF (r, r0) = dTf (r, r0) +O(1),

where F is the meromorphic mapping of Bm(R0) into P
u−1(C) defined by the representation

F = (L1(f̃) : · · · : Lu(f̃)).

Proof of Theorem 1.1. By using the universal covering if necessary, we may assume
that M = B

m(1).

Replacing Qj by Q
d
dj

j (j = 1, ..., q) if necessary, we may assume that Qj (j = 1, . . . , q)
have the same of the common degree d.

It is easy to see that there is a positive constant β such that β||f̃ ||d ≥ |Qi(f̃)| for every
1 ≤ i ≤ q. We set

A = {(i1, ..., ik+1) ; 1 ≤ ij ≤ q, ij �= it ∀j �= t}.
For each I = (i1, ..., ik+1) ∈ A, we denote by PI1, ..., PI(n+1) the hypersurfaces obtained in
Lemma 3.1 with respect to the family of hypersurfaces {Qi1 , ..., Qik+1

}. It is easy to see
that there exists a positive constant B ≥ 1, which is chosen common for all I ∈ A, such
that

|PIt(ω)| ≤ B max
1≤j≤k+1−n+t

|Qij(ω)|,

for all ω = (ω0, ..., ωn) ∈ C
n+1.
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Consider a reduced representation f̃ = (f0, . . . , fn) : B
m(1) → C

n+1 of f . For a fixed

point z ∈ B
m(1) \⋃q

i=1 Qi(f̃)
−1({0}). We may assume that

|Qi1(f̃)(z)| ≤ |Qi2(f̃)(z)| ≤ · · · ≤ |Qiq(f̃)(z)|.
Since Qi1 , . . . , Qiq are in k−subgeneral position, by Lemma 3.5, there exists a positive
constant A, which is chosen common for all z and (i1, ..., iq), such that

||f̃(z)||d ≤ A max
1≤j≤k+1

|Qij(f̃)(z)| = A|Qik+1
(f̃)(z)|.

Therefore, we have

q∏
i=1

||f̃(z)||d
|Qi(f̃)(z)|

≤ Aq−k

k∏
j=1

||f̃(z)||d
|Qij(f̃)(z)|

≤ Aq−kBn ||f̃(z)||kd(∏k−n+1
j=2 |Qij(f̃)(z)|

)·∏n
j=1 |PIj(f̃)(z)|

≤ c1
||f̃(z)||(k−n+1)nd∏n

j=1 |PIj(f̃)(z)|k−n+1
,

where I = (i1, ..., ik+1) and c1 is a positive constant, which is chosen common for all I ∈ A.
The above inequality implies that

log

q∏
i=1

||f̃(z)||d
|Qi(f̃)(z)|

≤ log c1 + (k − n+ 1) log
n∏

j=1

||f̃(z)||d
|PIj(f̃)(z)|

.(3.4)

Now, for a positive integer L, we denote by VL the vector subspace ofC[x0, . . . , xn] which
consists of all homogeneous polynomials of degree L and zero polynomial. We see that N
divisible by d. Hence, for each (i) = (i1, . . . , in) ∈ Nn

0 with σ(i) =
∑n

s=1 is ≤ N
d
, we set

W I
(i) =

∑
(j)=(j1,...,jn)≥(i)

P j1
I1 · · ·P jn

In · VN−dσ(j).

Then we see that W I
(0,...,0) = VN and W I

(i) ⊃ W I
(j) if (i) < (j) (in the sense of lexicographic

order). Therefore, W I
(i) is a filtration of VN . We have the following lemma due to [2].

Lemma 3.5. Let (i) = (i1, . . . , in), (i)
′ = (i′1, . . . , i

′
n) ∈ Nn

0 . Suppose that (i′) follows (i)
in the lexicographic ordering and defined

mI
(i) = dim

W I
(i)

W I
(i)′

.

Then, we have mI
(i) = dn, provided dσ(i) < N − nd.

We assume that

VN = W I
(i)1

⊃ W I
(i)2

⊃ · · · ⊃ W I
(i)K

,

where (i)s = (i1s, ..., ins), W
I
(i)s+1

follows W I
(i)s

in the ordering and (i)K = (N
d
, 0, . . . , 0).

We see that K is the number of n-tuples (i1, . . . , in) with ij ≥ 0 and i1 + · · · + in ≤ N
d
.



10 SI DUC QUANG, NGUYEN THI QUYNH PHUONG, AND NGUYEN THI NHUNG

Then we easily estimate that

K =

(
N
d
+ n

n

)
.

We define mI
s = dim

W I
(i)s

W I
(i)s+1

for all s = 1, . . . , K − 1 and set mI
K = 1.

Let u = dimVN . From the above filtration, we may choose a basis {ψI
1 , . . . , ψ

I
u} of VN

such that

{ψu−(mI
s+···+mI

K)+1, . . . , ψu}
is a basis of W I

(i)s
. For each s ∈ {1, . . . , K} and l ∈ {u − (mI

s + · · · +mI
K) + 1, . . . , u −

(mI
s+1 + · · ·+mI

K)}, we may write

ψI
l = P i1s

I1 . . . P ins
In hl, where (i1s, . . . , iks) = (i)s, hl ∈ V I

N−dσ(i)s .

Then we have

|ψI
l (f̃)(z)| ≤ |PI1(f̃)(z)|i1s . . . |PIn(f̃)(z)|iks |hl(f̃)(z)|

≤ c2|PI1(f̃)(z)|i1s . . . |PIn(f̃)(z)|iks ||f̃(z)||N−dσ(i)s

= c2

(
|PI1(f̃)(z)|
||f̃(z)||d

)i1s

. . .

(
|PIn(f̃)(z)|
||f̃(z)||d

)iks

||f̃(z)||N ,

where c2 is a positive constant independently from l, I, f and z. This implies that

log
u∏

l=1

|ψI
l (f̃)(z)| ≤

K∑
s=1

mI
s

(
i1s log

|PI1(f̃)(z)|
||f̃(z)||d + · · ·+ ins log

|PIn(f̃)(z)|
||f̃(z)||d

)

+ uN log ||f̃(z)||+ log c2.

(3.6)

We fix φ1, ..., φu, a basic of VN , ψ
I
s(f̃) = LI

s(F̃ ), where LI
s are linear forms and F̃ =

(φ1(f̃), . . . , φu(f̃)) is a reduced representation of a meromorphic mapping F . We set

bIj =
K∑
s=1

mI
sijs, 1 ≤ j ≤ k.

From (3.6) we have that

log
u∏

s=1

|LI
s(F̃ )(z)| ≤ log

(
n∏

j=1

( |PIj(f̃)(z)|
||f̃(z)||d

)bIj
)

+ uN log ||f̃(z)||+ log c2.

We set b = minj,I b
I
j . Because f is algebraically non degenerate over C, F is linearly non

degenerate over C. Then there exists an admissible set α = (α1, ..., αu) ∈ (Zm
+ )

u, with
|αs| ≤ s− 1, such that

W α(φs(f̃)) := det(Dαi(φs(f̃)))1≤i,s≤u �≡ 0.
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We also have

log
||f̃(z)||qdb|W α(φs(f̃))(z)|p∏q

i=1 |Qi(f̃)(z)|b
≤ log

||f̃(z)||pndb|W α(φs(f̃))(z)|p∏n
j=1 |PIj(f̃)(z)|pb

+O(1)

≤ log
||f̃(z)||pd

∑n
j=1 b

I
j |W α(φs(f̃))(z)|p∏n

j=1 |PIj(f̃)(z)|pbIj
+O(1)

≤ log
||f̃(z)||puN |W α(φs(f̃))(z)|p∏u

i=1 |ψI
i (f̃)(z)|p

+O(1)

≤ log
||f̃(z)||puN |W α(ψI

s(f̃))(z)|p∏u
i=1 |ψI

i (f̃)(z)|p
+O(1),

(3.7)

where W α(ψI
s(f̃)) = det(Dαi(ψI

s(f̃)))1≤i,s≤u, O(1) depends only on N and {Qi}qi=1. This
inequality implies that

log
||f̃(z)||qdb−puN |W α(φs(f̃))(z)|p

(
∏q

i=1 |Qi(f̃)(z)|b)
≤ log

|W α(φs(f̃))(z)|p∏u
i=1 |ψI

i (f̃)(z)|p
+O(1),(3.8)

for all z ∈ C
m outside a proper analytic subset of Cm, which is the union of zero sets of

functions Qi(f̃), PIj(f̃).

Put SI =
|W α(φs(f̃))(z)|∏u

i=1 |ψI
i (f̃)(z)|

. Then, there exists a positive constant K0 such that, for each

z ∈ C
m,

||f̃(z)||qdb−puN |W α(φs(f̃))(z)|p∏q
i=1 |Qi(f̃)(z)|b

≤ Kp
0 .S

p
I (z).

for some I ⊂ {1, ..., q} with �I = k + 1.

Lemma 3.9. For N = (n+ 1)d+ p(n+ 1)3I(ε−1) as in the assumption, we have

(a)
puN

db
≤ (k − n+ 1)(n+ 1) + ε,

(b) u ≤ en+2
(
dp(n+ 1)2I(ε−1)

)n
.

Proof of Lemma. For a real number x ∈ [0, 1
(n+1)2

], we have

(1 + x)n = 1 + nx+
n∑

i=2

(
n

i

)
xi ≤ 1 + nx+

2∑
i=1

ni

i!(n+ 1)2i−2
x

= 1 + nx+
n∑

i=2

1

i!
x ≤ 1 + (n+ 1)x.

(3.10)

We also note that

(n+ 1)d

N − (n+ 1)d
=

(n+ 1)d

p(n+ 1)3I(ε−1)d
≤ 1

(n+ 1)2
.(3.11)
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Now, we have the following estimates. First,

u =

(
N + n

n

)
=

(N + 1) · · · (N + n)

1 · · ·n .

Second, since the number of nonnegative integer t-tuples with summation ≤ T is equal
to the number of nonnegative integer (t+1)-tuples with summation exactly equal T ∈ Z,

which is
(T+t

t

)
, since the sum below is independent of j, we have that

bIj =
∑

σ(i)≤N/d

mI
(i)ij ≥

∑
σ(i)≤N/d−n

mI
(i)ij

=
∑

σ(i)≤N/d−n

dnij =
dn

n+ 1

∑
σ(i)≤N/d−n

n+1∑
j=1

ij

=
dn

n+ 1

∑
σ(i)≤N/d−n

(
N

d
− n

)
=

dn

(n+ 1)

(
N

d
− n

)(
N/d

n

)

=
dn(N/d)(N/d− 1) · · · (N/d− n− 1)(N/d− n)

1 · · · (n+ 1)d

=
N(N − d) · · · (N − (n− 1)d)(N − nd)

(n+ 1)!d
.

This implies that

puN

db
≤p(n+ 1)

(N + 1) · · · (N + n)

(N − d) · · · (N − nd)
= p(n+ 1)

n∏
j=1

N + j

N − (n+ 1)d+ jd

≤p(n+ 1)

(
N

N − (n+ 1)d

)n

≤ p(n+ 1)

(
1 +

(n+ 1)d

N − (n+ 1)d

)n

≤p(n+ 1)

(
1 + (n+ 1)

(n+ 1)d

N − (n+ 1)d

)
(∗)

≤p(n+ 1)

(
1 + (n+ 1)

(n+ 1)d

p(n+ 1)3I(ε−1)d

)

≤p(n+ 1)

(
1 +

1

p(n+ 1)ε−1

)
= p(n+ 1) + ε,

where the inequality (*) comes from (3.10) and (3.11). Also, one can be estimated that

u =

(
N + n

n

)
≤ en
(
1 +

N

n

)n

≤ en
(
n+ (n+ 1)d

n
+

p(n+ 1)3I(ε−1)d

n

)n

= en(p(n+ 1)2I(ε−1)d)n
(
1 +

1

n
+

n+ (n+ 1)d

np(n+ 1)2I(ε−1)d

)n

≤ (edp(n+ 1)3I(ε−1)
)n · (1 + 1

n
+

2

n(n+ 1)

)n

≤ (edp(n+ 1)3I(ε−1)
)n · (1 + 2

n

)n

≤ en+2
(
dp(n+ 1)2I(ε−1)

)n
.
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The lemma is proved.

Claim 3.12.
(
b
∑q

j=1 νQj(f̃)
− pνWα(φs(f̃))

)≤ b
∑q

i=1 min{u− 1, νQj(f̃)
}.

Fix z ∈ C
m, we may assume that

νQ1(f̃)
(z) ≥ · · · ≥ νQt(f̃)

(z) > 0 = νQt+1(f̃)
(z) = · · · = νQq(f̃)

(z),

where 0 ≤ t ≤ k, (t may be zero). We denote by {P1, . . . , Pn+1}, the family of hypersur-
faces corresponding to the family {Q1, ..., Qk+1} as in the Lemma 3.1. Then we will see
that

νP1(z) = νQ1(z),

νPi
(z) ≥ νQk−n+i

(z).

Put I = (1, ..., n+ 1) and M = u− 1. We have

pνWα(φs(f̃))
(z) = pνWα(ψI

s (f̃))
(z) ≥ p

u∑
s=1

max{νψI
s (f̃)

(z)−M, 0}.

For ψ = P i1
1 ...P in

n h ∈ {ψI
s}us=1, we have

ψ(f̃)(z) = P i1
1 (f̃)(z) . . . P in

n (f̃)(z).h(f̃)(z).

Hence

max{νψ(f̃)(z)−M, 0} ≥
n∑

t=1

max{ν
(P

it
t (f̃)

(z)−M, 0}

≥
n∑

t=1

it max{νPt(f̃)
(z)−M, 0}.

This implies that

p
u∑

s=1

max{νψs(f̃)
(z)−M, 0} ≥ p

∑
(i)

mI
(i)

k∑
t=1

it max{νPt(f̃)
(z)−M, 0}

= p

n∑
t=1

bIt max{νPt(f̃)
(z)−M, 0} ≥ p

n∑
t=1

bmax{νPt(f̃)
(z)−M, 0}

≥
K∑
t=1

bmax{νQt(f̃)
(z)−M, 0} =

q∑
i=1

bmax{νQi(f̃)
(z)−M, 0}

= b

q∑
i=1

max{(f ∗Qi)(z)−M, 0} = b

q∑
i=1

(
νQi(f̃)

(z)−min{u− 1, νQi(f̃)
(z)}).

Hence

b

q∑
i=1

νQi(f̃)
(z)− pνWα(φi(f̃))

(z) ≤ b

q∑
i=1

min{u− 1, νQi(f̃)
}.

The claim is proved.
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Assume that

ρΩf +

√−1

2π
∂∂̄ log h2 ≥ Ricω.

We now suppose that
q∑

j=1

δ
[u−1]
f (Qj) >

puN

db
+

ρpu(u− 1)

db
.

Then, for each j ∈ {1, . . . , q}, there exist constants ηj > 0 and continuous plurisubhar-

monic function ũj such that eũj |ϕj| ≤ ||f̃ ||dηj , where ϕj is a holomorphic function with
νϕj

= min{u− 1, f ∗Qj} and

q −
q∑

j=1

ηj >
puN

db
+

ρpu(u− 1)

db
.

Put uj = ũj + log |ϕj|, then uj is a plurisubharmonic and

euj ≤ ||f̃ ||dηj , j = 1, . . . , q.

Let

v(z) = log

∣∣∣∣∣(zα1+···+αu)p
(W α(φs(f̃))(z))

p

(
∏q

i=1 Qi(f̃)(z))b

∣∣∣∣∣+ b

q∑
j=1

uj(z).

Therefore, we have the following current inequality

2ddc[v] ≥ p[νWα(φi(f̃))
]− b

q∑
j=1

[νQi(f̃)
] +

q∑
j=1

2ddc[uj]

= p[νWα(φi(f̃))
]− b

q∑
j=1

[νQi(f̃)
] + b

q∑
j=1

[min{u− 1, νQi(f̃)
}] ≥ 0.

This implies that v is a plurisubharmonic function on B
m(1).

On the other hand, by the growth condition of f , there exists a continuous plurisub-
harmonic function ω �≡ ∞ on B

m(1) such that

eωdV ≤ ||f̃ ||2ρvm
Set

t =
2ρ

db(q − puN
db

−∑q
j=1 ηj)

> 0

and

λ(z) = (zα1+···+αu)p

(
W α(φi(f̃))

)p
(z)

Qb
1(f̃)(z) . . . Q

b
q(f̃)(z)

.

We see that
u(u− 1)p

2
t <

u(u− 1)p

2
· 2ρ

2ρu(u− 1)p
= 1,



NON-INTEGRATED DEFECT RELATION MEROMORPHIC MAPS 15

and the function ζ = ω + tv is plurisubharmonic on the Kähler manifold M . Choose a

position number δ such that 0 < u(u−1)pt
2

< δ < 1. Then, we have

eζdV = eω+tvdV ≤ etv||f̃ ||2ρvm = |λ|t(
q∏

j=1

etbuj)||f̃ ||2ρvm

≤ |λ|t||f̃ ||2ρ+
∑q

j=1 bdtηjvm = |λ|t||f̃ ||dbt(q− puN
db

)vm.

Integrating both sides of the above inequality over Bm(1), we have∫
Bm(1)

eζdV ≤
∫
Bm(1)

|λ|t||f̃ ||t(qdb−puN)vm.

= 2m

∫ 1

0

r2m−1

(∫
S(r)

(|λ|||f̃ ||qdb−puN
)t
σm

)
dr

≤ 2m

∫ 1

0

r2m−1

⎛
⎜⎜⎝
∫
S(r)

∑
�I=k+1

I⊂{1,...,q}

∣∣(zα1+···+αu)K0SI

∣∣ptσm

⎞
⎟⎟⎠ dr.

(3.13)

(a) We first consider the case where

lim
r→1

sup
Tf (r, r0)

log 1/(1− r)
< ∞.

We note that (
∑u

i=1 |αi|)pt ≤ u(u−1)p
2

t < δ < 1. Then by Proposition 2.3, there exists a
positive constant K1 such that, for every 0 < r0 < r < r′ < 1, we have∫

S(r)

∣∣(zα1+···+αu)K0SI(z)
∣∣pt σm ≤ K1

(
r′2m−1

r′ − r
dTf (r

′, r0)

)δ

.

Choosing r′ = r +
1− r

eTf (r, r0)
, we get

Tf (r
′, r0) ≤ 2Tf (r, r0)

outside a subset E ⊂ [0, 1] with
∫
E

dr
1−r

< +∞. Hence, the above inequality implies that

∑
�I=k+1

I⊂{1,...,q}

∫
S(r)

∣∣(zα1+···+αu)K0SI(z)
∣∣pt σm ≤ K

(1− r)δ

(
log

1

1− r

)δ

for all z outside E, where K is a some positive constant. By choosing K large enough,
we may assume that the above inequality holds for all z ∈ B

m(1). Then, the inequality
(3.13) yields that∫

Bm(1)

eζdV ≤ 2m

∫ 1

0

r2m−1 K

(1− r)δ

(
log

1

1− r

)δ

dr < +∞

This contradicts the results of S.T. Yau [13] and L. Karp [6].
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Hence, we must have

q∑
j=1

δ
[u−1]
f (Qj) ≤

puN

db
+

pρu(u− 1)

db
.

Since p ≤ b, the above inequality implies that

q∑
j=1

δ
[u−1]
f (Qj) ≤ (k − n+ 1)(n+ 1) + ε+

ρu(u− 1)

d
.

The theorem is proved in this case.

(b) We now consider the remaining case where

lim
r→1

sup
T (r, r0)

log 1/(1− r)
= ∞.

Repeating the argument in the proof of Theorem 1.1, we only need to prove the following
theorem.

Theorem 3.14. With the assumption of Theorem 1.1 and suppose that M = B
m(R0).

Then, we have

(q − p(n+ 1)− ε)Tf (r, r0) ≤
q∑

i=1

1

d
N

[u−1]

Qi(f̃)
(r) + S(r),

where S(r) ≤ K(log+ 1
R0−r

+ log+ Tf (r, r0)) for all 0 < r0 < r < R0 outside a set E ⊂
[0, R0] with

∫
E

dt
R0−t

< ∞.

Proof. Repeating the above argument, we have∫
S(r)

∣∣∣∣∣(zα1+···+αu)p
||f̃(z)||qdb−puN |W α(φs(f̃))(z)|p∏q

i=1 |Qi(f̃)(z)|b

∣∣∣∣∣
t

σm ≤ K1

(
R2m−1

R− r
dTf (R, r0)

)δ

for every 0 < r0 < r < R < R0. Using the concativity of the logarithmic function, we
have

p

∫
S(r)

log |(zα1+···+αu)|σm + (qdb− puN)

∫
S(r)

log ||f̃ ||σm + p

∫
S(r)

log |Wα(φs(f̃))|σm

− b

q∑
j=1

∫
S(r)

log |Qj(f̃)|σm ≤ K

(
log+

1

R0 − r
+ log+ Tf (R, r0)

)
(3.15)

for some positive constant K. By the Jensen formula, this inequality implies that

(qdb− puN)Tf (r, r0) + pNWα(φs(f̃))
(r)− b

q∑
i=1

NQi(f̃)
(r)

≤ K

(
log+

1

R0 − r
+ log+ Tf (R, r0)

)
+O(1).

(3.16)
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From Claim 3.12, we have

b

q∑
i=1

NQi(f̃)
(r)− pNWα(φs(f̃))

(r) ≤
q∑

i=1

N
[u−1]

Qi(f̃)
(r).

Combining this estimate and (3.16), we get(
q − puN

db

)
Tf (r, r0) ≤

q∑
i=1

1

d
N

[u−1]

Qi(f̃)
(r) +K

(
log+

1

R0 − r
+ log+ Tf (R, r0)

)
+O(1).

Since puN
db

≤ p(n+ 1) + ε, the above inequality implies that

(q − p(n+ 1)− ε)Tf (r, r0) ≤
q∑

i=1

1

d
N

[u−1]

Qi(f̃)
(r) +K

(
log+

1

R0 − r
+ log+ Tf (R, r0)

)
+O(1).

Choosing R = r +
1− r

eTf (r, r0)
, we get

Tf (R, r0) ≤ 2Tf (r, r0)

outside a subset E ⊂ [0, 1] with
∫
E

dr
1−r

< +∞. Thus

(q − p(n+ 1)− ε)Tf (r, r0) ≤
q∑

i=1

1

d
N

[u−1]

Qi(f̃)
(r) +K

(
log+

1

R0 − r
+ log+ T (r, r0)

)
+O(1).

This implies that
q∑

j=1

δ
[u−1]
f (Qj) ≤

q∑
j=1

δ
[u−1]
f,∗ (Qj) ≤ p(n+ 1) + ε.

The theorem is proved in this case. �

4. Value distribution of the Gauss map of a complete regular

submanifold of C
m

Let M be a connected complex manifold of dimension m. Let

f = (f1, . . . , fn) : M → C
n

be a regular submanifold of Cn; namely, f be a holomorphic map of M into C
n such that

rankdpf = dimM for every point p ∈ M. We assign each point p ∈ M to the tangent
space Tp(M) of M at p which may be considered as an m-dimensional linear subspace
of Tf(p)(C

n). Also, each tangent space Tp(C
n) can be identified with T0(C

n) = C
n by a

parallel translation. Hence, each Tp(M) is corresponded to a point G(p) in the complex
Grassmannian manifold G(m,n) of all m-dimensional linear subspaces of Cn.

Definition 4.1. The map G : p ∈ M �→ G(p) ∈ G(m,n) is called the Gauss map of the
map f : M → C

n.

The space G(m,n) is canonically embedded in P
N(C) = P(

∧m
C

n), where N =
(
n
m

)−1.

Then we may identify the Gauss map G with a holomorphic mapping of M into P
N(C)
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given as follows: taking holomorphic local coordinates (z1, . . . , zn) defined on an open set
U , we consider the map

∧
:= D1f ∧ · · · ∧Dnf : U →

m∧
C

n \ {0},

where

Dif = (
∂f1
∂zi

, · · · , ∂fn
∂zi

).

Then, locally we have

G = π ◦
∧

,

where π : CN+1 \ {0} → P
N(C) is the canonical projection map. A regular submanifold

M of Cm is considered as a Kähler manifold with the metric ω induced from the standard
flat metric on C

m. We denote by dV the volume form on M . For arbitrarily holomorphic
coordinates z1, . . . , zm, we see that

dV = |
∧

|2 (√−12
)m

dz1 ∧ dz̄1 ∧ · · · ∧ dzm ∧ dzm,

where

|
∧

|2 =
∑

1≤i1<···<im≤n

∂(fi1 , ..., fim)

∂(z1, ..., zm)

2

.

Therefore, for a regular submanifold f : M → C
m, the Gauss map G : M → P

N(C)
satisfies the following growth condition

ΩG + ddc log h2 = ddc log |
∧

|2 = Ric(ω),

where h = 1. Then Theorem 1.1 immediately gives us the following.

Theorem 4.2. Let M be a complex manifold of dimension m such that the universal
covering of M is biholomorphic to a ball Bm(R0) (0 < R0 ≤ +∞) in C

m. Let f : M → C
n

be a complete regular submanifold. Assume that the Gauss map G : M → P
N(C) is

algebraically non-degenerate, where N =
(
n
m

) − 1. Let Q1, . . . , Qq be q hypersurfaces of

degree dj (1 ≤ j ≤ q) in k-subgeneral position in P
N(C). Let d be the least common

multiple of di’s, i.e., d = l.c.m.{d1, . . . , dq}. Then, for every ε > 0 we have

q∑
i=1

δ
[u−1]
G (Qi) ≤ p(N + 1) + ε+

ρu(u− 1)

d
,

where p = k −N + 1, L = (N + 1)d + p(N + 1)3I(ε−1)d and u =
(
L+N
N

) ≤ 3N+2(dp(N +

1)2I(ε−1))N .
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