期刊论文详细信息
JOURNAL OF POWER SOURCES 卷:454
4D-resolved physical model for Electrochemical Impedance Spectroscopy of Li(Ni1-x-yMnxCoy)O2-based cathodes in symmetric cells: Consequences in tortuosity calculations
Article
Shodiev, Abbos1,2  Primo, Emiliano N.1,2  Chouchane, Mehdi1,2  Lombardo, Teo1,2  Ngandjong, Alain C.1,2  Rucci, Alexis1,2  Franco, Alejandro A.1,2,3,4 
[1] Univ Picardie Jules Verne, LRCS, UMR CNRS 7314, HUB Energie, 15 Rue Baudelocque, F-80039 Amiens, France
[2] FR CNRS 3459, RS2E, Hub Energie, 15 Rue Baudelocque, F-80039 Amiens, France
[3] FR CNRS 3104, ALISTORE European Res Inst, HUB Energie, 15 Rue Baudelocque, F-80039 Amiens, France
[4] Inst Univ France, 103 Blvd St Michel, F-75005 Paris, France
关键词: Lithium ion batteries;    NMC cathodes;    Symmetric cell;    Electrochemical impedance spectroscopy;    4D-resolved physical modeling;   
DOI  :  10.1016/j.jpowsour.2020.227871
来源: Elsevier
PDF
【 摘 要 】

Electrochemical impedance spectroscopy (EIS) constitutes an experimental technique used for the characterization of Lithium Ion Battery (LIB) porous electrodes tortuosities. For the first time, a 4D (3D in space + time) physical model is proposed to simulate EIS carried out on NMC porous cathodes, derived from the simulation of their manufacturing process, in symmetric cells. EIS is simulated by explicitly considering the NMC active material, carbon-binder domains (CBD) and pores as spatially-resolved separated phases and assuming different physics for each of them. The calculated impedance responses are compared with in house experimental results coming from NMC-based cathodes prepared in a similar way. We investigate the influence of the physics assumed to describe the CBD behavior, the conductivity of the different solid phases and electrolyte, the relative amount of NMC and CBD and the impact of calendering on the EI spectra, and we compare the results with the experimental EIS measurements. This methodology allows to understand the limitations of using EIS, electric circuit models and homogenized physical models for the determination of the tortuosity factor of NMC-based cathodes, revealing a complex interplay between the conductivity of the solid phases, the electrolyte properties and the cathode meso/microstructure.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpowsour_2020_227871.pdf 2989KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次