期刊论文详细信息
JOURNAL OF POWER SOURCES 卷:196
Modeling an ordered nanostructured cathode catalyst layer for proton exchange membrane fuel cells
Article
Hussain, M. M.1  Song, D.1  Liu, Z. -S.1  Xie, Z.1 
[1] CNR, Inst Fuel Cell Innovat, Vancouver, BC V6T 1W5, Canada
关键词: Ordered nanostructured CCL;    PEM fuel cell;    Carbon nanotube (CNT);    Knudsen diffusion;   
DOI  :  10.1016/j.jpowsour.2010.10.111
来源: Elsevier
PDF
【 摘 要 】

A 3D mathematical model of an ordered nanostructured cathode catalyst layer (CCL) has been developed for proton exchange membrane (PEM) fuel cells. In an ordered nanostructured CCL, carbon nanotubes (CNTs) are used as support material for Pt catalyst, upon which a thin layer of proton-conducting polymer (Nation) is deposited, which are then aligned along the main transport direction (perpendicular to the membrane) of various species. The model considers all the relevant processes in different phases of an ordered nanostructured CCL. In addition, the effect of Knudsen diffusion is accounted in the model. The model can predict not only the performance of an ordered nanostructured CCL at various operating and design conditions but also can predict the distributions of various fields in different phases of an ordered nanostructured CCL. The predicted nanostructured CCL performance with estimated membrane overpotential is validated with measured data found in the literature, and a good agreement is obtained between the model prediction and measured result. Moreover, a parametric study is conducted to investigate the effect of key design parameters on the performance of an ordered nanostructured CCL. In the absence of liquid water, it is found that oxygen diffusion in the pore phase is not the limiting factor for the performance of an ordered nanostructured CCL, owing to its parallel gas pores and high porosity. However, the transport of dissolved oxygen through the Nation phase has a significant effect on the performance of an ordered nanostructured CCL. Further, it is found that increasing the spacing between CNTs results in a considerable drop in the performance of an ordered nanostructured CCL at the base case conditions considered in the simulation. (C) 2011 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jpowsour_2010_10_111.pdf 772KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次