期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:236
Perfect powers in sum of three fifth powers
Article
Das, Pranabesh1  Dey, Pallab Kanti2,3  Koutsianas, Angelos4  Tzanakis, Nikos5 
[1] Univ Waterloo, Pure Math, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Ramakrishna Mission Vivekananda Educ & Res Inst, Dept Math, Howrah 711202, W Bengal, India
[3] SRM Univ AP, Amaravati 522502, Andhra Pradesh, India
[4] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[5] Univ Crete, Dept Math & Appl Math, Voutes Campus, Iraklion 70013, Greece
关键词: Diophantine equation;    Galois representation;    Frey curve;    Modularity;    Level lowering;    Sum of perfect powers;   
DOI  :  10.1016/j.jnt.2021.07.029
来源: Elsevier
PDF
【 摘 要 】

In this paper we determine the perfect powers that are sums of three fifth powers in an arithmetic progression. More precisely, we completely solve the Diophantine equation (x - d)5 + x5 + (x + d)5 = zn, n > 2, where d, x, z is an element of Z and d = 2a5b with a, b > 0. (c) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2021_07_029.pdf 771KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次