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PERFECT POWERS IN SUM OF THREE FIFTH POWERS

PRANABESH DAS, PALLAB KANTI DEY, ANGELOS KOUTSIANAS,
AND NIKOS TZANAKIS

Abstract. In this paper we determine the perfect powers that are sums of three
fifth powers in an arithmetic progression. More precisely, we completely solve the
Diophantine equation

(x− d)5 + x5 + (x+ d)5 = zn, n ≥ 2,

where d, x, z ∈ Z and d = 2a5b with a, b ≥ 0.

1. Introduction

In 1956, Schäffer [35] considered the equation

1k + 2k + · · ·+ xk = yn. (1.1)

He proved that if k ≥ 1 and n ≥ 2 are fixed, then (1.1) has only finitely many
solutions except for the cases (k, n) ∈ {(1, 2), (3, 2), (3, 4), (5, 2)}. In the same paper
Schäffer stated the following conjecture on the integral solution of (1.1).

Conjecture 1. [Schäffer, [35]]
Let k ≥ 1, n ≥ 2 be integers and (k, n) /∈ {(1, 2), (3, 2), (3, 4), (5, 2)}. The equation

1k + 2k + · · ·+ xk = yn,

has only one non-trivial solution, namely (k, n, x, y) = (2, 2, 24, 70).

The equation (1.1) and its generalizations have a long and rich history. Bennett,
Győry, Pintér [5] proved the Conjecture 1 for arbitrary n and k ≤ 11. Following and
extending the approach of [5], Pintér [33] proved Conjecture 1 for odd values of k
with 1 ≤ k < 170 and even values of n.

As a natural generalization of equation (1.1), Zhang and Bai [45] considered the
equation

(x+ 1)k + (x+ 2)k + · · ·+ (x+ r)k = yn, (1.2)

where x, y ∈ Z, r, k ∈ N and n ≥ 2.

2010 Mathematics Subject Classification: Primary 11D61, Secondary 11D41, 11F11, 11F80.
Keywords: Diophantine equation, Galois representation, Frey curve, modularity, level lowering, sum
of perfect powers.
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The equation (1.2) is comparatively more difficult than the equation (1.1). There
has been some progress on equation (1.2) for particular values of k, n and r. Below
we list down all results to the best of our knowledge obtained for equation (1.2) .

We first list down the results obtained for power sums in a range of values of r.
Stroeker [38] completely solved the equation (1.2) for k = 3, n = 2 and 2 ≤ r ≤ 50.
Recently, Bennett, Patel and Siksek [8] extended the result of Stroeker for n ≥ 3.
Zhang and Bai [45] solved the equation (1.2) for k = 2 and r = x. Bartoli and
Soydan [37, 4] extended the result of Zhang and Bai [45] for k ≥ 2 and r = lx with
l ≥ 2.

The equation (1.2) has also been studied for fixed r. Cassels [17] solved the equation
(1.2) completely for n = 2, r = 3 and k = 3. Zhang [43] subsequently considered the
equation (1.2) for r = 3 and he solved it completely for k ∈ {2, 3, 4}. Recently, Bennet,
Patel and Siksek [7] extended Zhang’s result, by completely solving equation (1.2) for
r = 3 in the cases k = 5 and k = 6. Several authors have also studied equations
(1.1), (1.2) and its variants using a variety of classical and modern techniques (see
e.g. [5, 10, 14, 19, 20, 23, 24, 25]).

As a natural generalization of all the above results many mathematicians have
recently studied power sums in arithmetic progression. They have considered the
equation

(x+ d)k + (x+ 2d)k + · · ·+ (x+ rd)k = yn, x, y, d ∈ Z, r, k ∈ N, n ≥ 2. (1.3)

In this paper we are particularly interested in the case r = 3, in particular for the
equation

(x− d)k + xk + (x+ d)k = yn, n ≥ 2. (1.4)

We mention some related results for k ≤ 4. Koutsianas [26] studied the equation
(1.4) for k = 2, where d is of the form pb with p a suitable prime. Koutsianas and Patel
[27] completely solved the equation (1.4) for k = 2 and for all values of 1 ≤ d ≤ 5000,
using the characterization of primitive divisors in Lehmer sequences by Bilu-Hanrot-
Voutier [11]. For 1 ≤ d ≤ 106 and k = 3, Argáez-Garćıa and Patel [1, 2, 3] studied the
equation (1.3) for r ∈ {3, 5, 7}. For k = 4 the equation (1.4) was solved by Zhang [44]
for some particular choices of d and Langen [29] under the assumption gcd(x, d) = 1.
For further reference we include all known results on equation (1.3) in Table 1.

The general equation (1.4) for k ≥ 5 is a difficult problem. In this paper, we study
the Diophantine equation

(x− d)5 + x5 + (x+ d)5 = zn, n ≥ 2, xz �= 0. (1.5)
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d r k n References

1 x 2 ≥ 2 Zhang and Bai [45]
1 3 3 2 Cassels [17]
1 3 {2, 3, 4} ≥ 2 Zhang [43]
1 3 {5, 6} ≥ 2 Bennett, Patel and Siksek [7]
1 {1, · · · , 50} 3 ≥ 2 Bennett, Patel and Siksek [8]
1 {2, · · · , 10} 2 ≥ 2 Patel [31]
a suitable set of
prime powers

3 2 ≥ 7 Koutsianas [26]

composed of a
suitable set of
prime powers

3 4 ≥ 11 Zhang [44]

gcd(x, d) = 1 3 4 ≥ 2 Langen [29]
{1, · · · , 104} {2, · · · , 10} 2 ≥ 2 Kundu and Patel [28]
{1, · · · , 106} 3, 7 3 ≥ 5 Argáez-Garciá and Patel [2, 3]
{1, · · · , 106} 5 3 ≥ 5 Argáez-Garciá [1]
{1, · · · , 5000} 3 2 ≥ 2 Koutsianas and Patel [27]

Table 1. Notable results on solutions of special cases of (1.3).

Recently, Bennett and Koutsianas [6] solved equation (1.5) with the natural as-
sumption gcd(x, d) = 1. This assumption enables them to factorize the left-hand side
of (1.5) and reduce the problem to the resolution of Fermat type equations of signa-
ture (n, n, 2) with coefficients independent of d. In the general case, the coefficients
of the Fermat type equations have prime factors that divide 10 · gcd(x, d). Therefore,
without any restrictions to gcd(x, d) we are not able to solve (1.5) with the current
techniques. The existence of infinite family of solutions for small exponents n, for in-
stance the solutions (x, d, y, n) = (ra4, sa4, a3, 7), (ra6, sa6, a, 31) and (ra8, sa8, a, 41)
where r, s ∈ Z

∗ and1 a = (r − s)5 + r5 + (r + s)5, show that the complete resolution
of (1.5) is a hard and challenging problem.

From the above we understand that if we want to resolve equation (1.5) without
the assumption gcd(x, d) = 1 but with freedom in the choice of d, we have to fix the
prime factors of d. Let us assume that d is divisible by primes that lie in a fixed finite
set S. As we mentioned in the previous paragraph the coefficients of the Fermat type
equations will depend on S ∪ {2, 5}. Because the primes 2 and 5 always show up for
any choice of S it is very natural to study the resolution of (1.5) for S = {2, 5}, i.e.
when d = 2a5b with a, b ≥ 0. We prove the following which is a generalization of [7,
Theorem 1].

1For example, the quadruples (x, d, y, n) = (334, 334, 333, 7), (2 · 2766, 2766, 276, 31) and (2438, 2 ·
2438, 243, 41) are the solutions to the equation (1.4) for the three smallest positive values of a.
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Theorem 1. Let n ≥ 2 be an integer and d = 2a5b with integers a, b ≥ 0. Then, the
equation

(x− d)5 + x5 + (x+ d)5 = zn,

is solvable in integers x, z with xz �= 0 only if n = 5 and a ≥ 1, in which case all
integer solutions are given by (x, z) = ±(d/2, 3d/2).

The paper is organized as follows. In Section 2 we associate a solution (x, z) of
(1.5) for d = 2a5b with two Fermat type equations of signature (n, n, 2) with pairwise
coprime terms. In Section 3 we resolve (1.5) for n = 2, 3 and 5 using a variety of
elementary and advanced techniques. In Section 4 we explain how we can apply the
modular method and the recipes in [9] to resolve (1.5) when n ≥ 7 is a prime. Finally,
in Section 5 we complete the proof of Theorem 1 for n ≥ 7 and we give the necessary
details of the computations.

Remark 2. In principle, the method we describe in this paper will work for any choice
of the set S when S contains 2 and 5. However, the required computations for the
spaces of newforms are beyond to the current computer power.

The computations of this paper have been accomplished in computer software
Magma [12] and the code can be found at

https://github.com/akoutsianas/5th_powers.
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2. Preliminaries

We have the equation

(x− d)5 + x5 + (x+ d)5 = zn, d = 2a5b, a, b ≥ 0, xz �= 0. (2.1)

https://github.com/akoutsianas/5th_powers
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Clearly, in order to prove Theorem 1 we may assume that n is a prime number.
Since (2.1) can be rewritten as

x(3x4 + 20d2x2 + 10d4) = zn, (2.2)

it suffices to consider only the case in which both x and z are positive.

Let νp(N) denotes the p-adic valuation of an integer N , where p is a prime. We set

x = 2α5βx1, gcd(x1, 10) = 1, P = 3x4+20d2x2+10d4, z = 2u5vZ, gcd(Z, 10) = 1,

hence

2α5βx1P = 2nu5nvZn. (2.3)

Since gcd(x, P ) = gcd(x, 10d4), it follows that

gcd(x, P ) = 2min{4a+1,α} · 5min{4b+1,β} and gcd(x1, P ) = 1.

Let us put P = 2ν2(P )5ν5(P )P1. Clearly, gcd(x1, P1) = 1 and gcd(P1, 10) = 1; there-
fore, P1 = 2−ν2(P )5−ν5(P )P . Using these in (2.3) we obtain 2α+ν2(P )5β+ν5(P )x1P1 =
2nu5nvZn, where gcd(x1P1Z, 10) = 1. It follows that

α + ν2(P ) = nu, β + ν5(P ) = nv,

and x1P1 = Zn. From gcd(x1, P1) = 1, it follows that

x1 = zn1 , P1 = zn2 , Z = z1z2, gcd(z1, z2) = 1, gcd(z1z2, 10) = 1. (2.4)

We rewrite equation (2.2) equivalently in the following two ways:

10(x2 + d2)2 − 7x4 = P, (2.5)

(3x2 + 10d2)2 − 70d4 = 3P. (2.6)

Noting that

P = 3 · 24α54βx4
1 + 22a+2α+252b+2β+1x2

1 + 24a+154b+1, (2.7)

we consider four cases according to the values of a, α and b, β.

Case I. Suppose 4α < 4a + 1 and 4β < 4b + 1. This is equivalent to a ≥ α and
b ≥ β and from (2.7) we get ν2(P ) = 4α and ν5(P ) = 4β. Because x = 2α5βzn1 ,
d = 2a5b and P = 24α54βzn2 , dividing equations (2.5) and (2.6) by 24α54β we obtain
the following two equations

z2
n + 7z1

4n = 10(z1
2n + 22(a−α)52(b−β))2, (2.8)

3z2
n + 7 · 24(a−α)+154(b−β)+1 = (3z1

2n + 22(a−α)+152(b−β)+1)2. (2.9)
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Case II. Suppose 4α < 4a + 1 and 4β > 4b + 1. This is equivalent to a ≥ α and
β ≥ b + 1 and from (2.7) we get that ν2(P ) = 4α and ν5(P ) = 4b + 1. Because
x = 2α5βzn1 , d = 2a5b and P = 24α54b+1zn2 , dividing equations (2.5) and (2.6) by
24α54b+1 we obtain the following two equations

z2
n + 7 · 54(β−b)−1z1

4n = 2(52(β−b)z1
2n + 22(a−α))2, (2.10)

3z2
n + 7 · 24(a−α)+1 = 5(3 · 52(β−b)−1z1

2n + 22(a−α)+1)2. (2.11)

Case III. Suppose 4α > 4a + 1 and 4β < 4b + 1. This is equivalent to α ≥ a + 1
and b ≥ β and from (2.7) we get that ν2(P ) = 4a + 1 and ν5(P ) = 4β. Because
x = 2α5βzn1 , d = 2a5b and P = 24a+154βzn2 , dividing equations (2.5) and (2.6) by
24a+154β we obtain the following two equations

z2
n + 7 · 24(α−a)−1z1

4n = 5(22(α−a)z1
2n + 52(b−β))2, (2.12)

3z2
n + 7 · 54(b−β)+1 = 2(3 · 22(α−a)−1z1

2n + 52(b−β)+1)2. (2.13)

Case IV. Suppose 4α > 4a+1 and 4β > 4b+1. This is equivalent to α ≥ a+1 and
β ≥ b + 1 and from (2.7) we get that ν2(P ) = 4a + 1 and ν5(P ) = 4b + 1. Because
x = 2α5βzn1 , d = 2a5b and P = 24a+154b+1zn2 , dividing equations (2.5) and (2.6) by
24a+154b+1 we obtain the following two equations

zn2 + 7 · 24(α−a)−154(β−b)−1z1
4n = (22(α−a)52(β−b)z2n1 + 1)2, (2.14)

3zn2 + 7 = 10(3 · 22(α−a)−152(β−b)−1z1
2n + 1)2. (2.15)

Equations (2.8)-(2.15) all have the general shape of a ternary generalized Fermat-
type equation of signature (n, n, 2), namely,

Aan + Bbn = Cc2. (2.16)

where A, a,B, b, C, c are shown in Table 2. We need to view our equations as such in
Sections 4 and 5 where we treat the case n ≥ 7 by applying the recipes of [9]. For
the application of the results therein we need that Aa,Bb, Cc be pairwise relatively
prime.

In view of (2.16), Aa,Bb, Cc are pairwise coprime if and only if gcd(Aa,Bb) = 1.
Since we have already seen that gcd(z1z2, 10) = 1 and gcd(z1, z2) = 1, the said
requirement gcd(Aa,Bb) = 1 is equivalent to 7 � z2. This is true because, if 7 | z2,
then, by (2.16) and the fact that 7 | B and 7 � C, it follows that 7 | c. Thus, the
valuation at 7 of the right-hand side of equations (2.8)-(2.15) is ≥ 2. On the other
hand, because n ≥ 2, gcd(z1, z2) = 1 and 7 | z2, the valuation at 7 of the left-hand
side of equations (2.8)-(2.15) is equal to 1, which is a contradiction.
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Eq. A a B b C c

(2.8) 1 z2 7 z41 10 z2n1 + 22(a−α)52(b−β)

(2.9) 3 z2 7 · 24(a−α)+154(b−β)+1 1 1 −3z2n1 − 22(a−α)+152(b−β)+1

(2.10) 1 z2 7 · 54(β−b)−1 z41 2 52(β−b)z2n1 + 22(a−α)

(2.11) 3 z2 7 · 24(a−α)+1 1 5 −3 · 52(β−b)−1z2n1 − 22(a−α)+1

(2.12) 1 z2 7 · 24(α−a)−1 z41 5 22(α−a)z2n1 + 52(b−β)

(2.13) 3 z2 7 · 54(b−β)+1 1 2 3 · 22(α−a)−1z2n1 + 52(b−β)+1

(2.14) 1 z2 7 · 24(α−a)−154(β−b)−1 z41 1 22(α−a)52(β−b)z2n1 + 1
(2.15) 3 z2 7 1 10 3 · 22(α−a)−152(β−b)+1z2n1 + 1

Table 2. Parameters needed for the application of the recipes of [9].

3. Solving equation (2.1) when n = 2, 3, 5

In this section we prove that equation (2.1) is impossible when n = 2, 3 and solve
the equation when n = 5.

3.1. The case n = 2. In this case equation (2.1) becomes

(x− d)5 + x5 + (x+ d)5 = z2, d = 2a5b, a, b ≥ 0, xz �= 0. (3.1)

We have to consider each case (I)-(IV) (as defined in Section 2) separately.

Case (I): By (2.8) we have z22 + 7z81 ≡ 0 (mod 5). However, from 5 � z1z2 it follows
that z22 + 7z81 ≡ 1, 3 (mod 5) and we get a contradiction.

Case (II): By (2.11) we have 3z22 + 7 · 24(a−α)+1 ≡ 0 (mod 5). However, 3z22 + 7 ·
24(a−α)+1 ≡ 3z22+14 �≡ 0 (mod 5) (actually, 3z22+14 ≡ 1 or 2 (mod 5) because 5 � z2)
and we get a contradiction.

Case (III): By (2.12) we have z22 +7 · 24(α−a)−1 ≡ 5 (mod 8) as 2 � z1. On the other
hand, as 2 � z2 and 4(α − a) − 1 ≥ 3, we have z22 + 7 · 24(α−a)−1 ≡ 1 (mod 8), which
is a contradiction.

Case (IV): Putting z21 = x1 in equation (2.14) leads us to the equation

3 · 24(α−a)−154(β−b)−1x4
1 + 22(α−a)+152(β−b)x2

1 + 1 = z2
2.

We put 4(α − a) − 1 = 4k + 3 and 4(β − b) − 1 = 4l + 3, where k, l ≥ 0 so that the
above equation becomes

3000(2k5lx1)
4 + 200(2k5lx1)

2 + 1 = z2
2.

The elliptic curve defined by 3000X4 + 200X2 + 1 = Y 2 is isomorphic to the elliptic
curve with Cremona label 134400ed1 which has rank zero and torsion subgroup iso-
morphic to Z/2Z, hence (X, Y ) = (0,±1) are its only affine rational point. Clearly,
these points do not provide us with an acceptable pair (x1, z2).
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Thus we conclude that equation (3.1) has no solutions, hence we have proved the
following:

Proposition 3. Equation (2.1) with n = 2 is impossible.

3.2. The case n = 3. In this case equation (2.1) becomes

(x− d)5 + x5 + (x+ d)5 = z3, d = 2a5b, a, b ≥ 0, xz �= 0. (3.2)

In accordance with Section 2 we examine each case (I) through (IV) separately. To
these cases correspond equations (2.8), (2.10), (2.12) and (2.14), respectively, which
by elementary symbolic computations are transformed into equivalent equations as
follows:

Equation (2.8) becomes

3

(
z61

22(a−α)52(b−β)

)2

+ 20

(
z61

22(a−α)52(b−β)

)
+ 10 =

1

2a−α5b−β

( z2
2a−α5b−β

)3

.

We rewrite this as

3Y 2 + 20Y + 10 =
1

2a−α5b−β
X3, Y =

z61
22(a−α)52(b−β)

, X =
z2

2a−α5b−β
. (3.3)

Equation (2.10) becomes

3

(
52(β−b)z61
22(a−α)

)2

+ 20

(
52(β−b)z61
22(a−α)

)
+ 10 =

5

2a−α

( z2
2a−α

)3

.

We rewrite this as

3Y 2 + 20Y + 10 =
5

2a−α
X3, Y =

52(β−b)

22(a−α)
z61 , X =

z2
2a−α

. (3.4)

Equation (2.12) becomes

3

(
22(α−a)z61
52(b−β)

)2

+ 20

(
22(α−a)z61
52(b−β)

)
+ 10 =

2

5b−β

( z2
5b−β

)3

,

which we rewrite as

3Y 2 + 20Y + 10 =
2

5b−β
X3, Y =

22(α−a)

52(b−β)
z61 , X =

z2
5b−β

. (3.5)

Equation (2.14) becomes

3(22(α−a)52(β−b)z61)
2 + 20(22(α−a)52(β−b)z61) + 10 = z32 ,

which we rewrite as

3Y 2 + 20Y + 10 = 10X3, Y = 22(α−a)52(β−b)z61 , X = z2. (3.6)
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We note that in every equation (3.3)-(3.6), the change of variable X = μX1, where
μ is an appropriate explicit S-integer with S ⊆ {2, 5}, depending on the classes
(mod 3) of a− α, b− β, leads to an equation

3Y 2 + 20Y + 10 = cX3
1 , (3.7)

where c runs through a “small” explicit set of S-integers with S ⊆ {2, 5} (see below
for each case separately). The elliptic curve defined by (3.7) is isomorphic to the
elliptic curve

y21 = x3
1 + 630c2, x1 = 3cX1, y1 = 3c(3Y + 10). (3.8)

Remark 4. In all cases above, X and Y are S-integers with S ⊆ {2, 5} and we see
that X1 is also an S-integer. Therefore, we have to compute all S-integral points
(x1, y1) on the elliptic curve defined by (3.8). For certain values of c the rank of the
corresponding elliptic curve is zero with trivial torsion subgroup, therefore no rational
points exist. For all the remaining values of c the rank is 2 and we compute the S-
integral points with the aid of the magma [12] routines SIntegralPoints (when
S �= ∅) or IntegralPoints (when S = ∅); for the background of these routines we
refer, respectively, to [32] and [39, 22] (see also [41]). We observe that the y-coordinate
of an S-integral point corresponds to a Y that must be equal to the product of an
S-integer times a sixth power of a non-zero integer. If that does not happen then no
solutions of (3.2) arise from that point. We ask the reader to have these remarks in
mind whenever we expose the solutions of (3.8) for the various values of c.

We consider equation (3.8) separately for each equation (3.3)-(3.6).

Equation (3.3): We put (a−α, b−β) = (3a1+ i, 3b1+ j), where 0 ≤ i, j ≤ 2. Then,
in (3.3) we have

Y =
z61

26a1+2i56b1+2j
, X =

z2
23a1+i53b1+j

, 1

2a−α5b−β
X3 = cX3

1 ,

where

c =
1

2i5j
, X1 =

z2
24a1+i54b1+j

.

Now we consider equation (3.8) with

c ∈ {1, 1/2, 1/4, 1/5, 1/25, 1/10, 1/50, 1/20, 1/100}.
When c ∈ {1, 1/2, 1/5, 1/10, 1/50, 1/20}, the curve defined by the equation (3.8) is
of zero rank with trivial torsion subgroup, hence there are no rational points.

For the remaining values c = 1/4, 1/25, 1/100 equation (3.8) defines an elliptic
curve of rank 2 and we have to compute all S-integral points on it, where S = {2, 5}.

When c = 1/4, equation (3.8) becomes y21 = x3
1 +

315
8

and its S-integral points are

(x1, y1) = (−3

2
, ±6), (−33

50
, ±1563

250
) , (

9

4
, ±57

8
) , (

849

256
, ±35673

4096
) , (

23

2
, ±79

2
) .
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From (3.8), the values of Y corresponding to the above solutions are respectively:

Y = −2

3
, −6, −24 13

3 · 53
, −22 191

53
, −1

6
, −13

2
, 13 · 127

210 3
, −3 · 2459

210
, 27

32
, −22 47

32
.

Then from Remark 4 these values do not lead to a solution and hence for c = 1/4
equation (3.3) has no solutions.

When c = 1/25, equation (3.8) becomes y21 = x3
1 +

126
125

and its S-integral points are

(x1, y1) = (−1

5
, ±1), (

1009

2500
, ±129527

125000
) , (

69

80
, ±411

320
) , (

99

25
, ±993

125
),

with the corresponding values of Y being

Y = − 5

32
, −5 · 11

32
, −59 · 347

23 32 54
, −31 · 71 · 127

23 32 54
, 15

26
, −52 53

26 3
, 281

15
, −127

5
.

Again by Remark 4 these values do not lead to a solution.

Finally, if c = 1/100 then (3.8) becomes y21 = x3
1 +

63
1000

and its S-integral points
are

(x1, y1) =(−159

400
, ± 111

8000
) , (

1

100
, ± 251

1000
) , (

3

10
, ± 3

10
) , (

81

100
, ± 771

1000
) ,

(
129921

16 · 104
, ±49508031

64 · 106 ) , (
33

10
, ±6).

These respectively give

Y =− 7 · 109
24 15

, −32 31

24 5
, − 72

90
, −19 · 29

90
, 0, −22 5

3
, 157

30
, −119

10
, 13 · 83 · 3121

210 54
,

− 7 · 47 · 67 · 1039
210 54 3

, 190

3
, −70.

As above these values do not lead to a solution.

Conclusion: No solutions to (3.3) exist.

Equation (3.4): We put a− α = 3a1 + i with 0 ≤ i ≤ 2. Then, in (3.4) we have

Y =
52(β−b)z61
26a1+2i

, X =
z2

23a1+i
, 5

2a−α
X3 = cX3

1 ,

where

c =
5

2i
, X1 =

z2
24a1+i

.

Thus we consider equation (3.8) with c ∈ {5, 5/2, 5/4}. Now X, Y and X1 are S-
integers with S = {2}, and (x1, y1) is S-integral solution to (3.8).

If c = 5, then (3.8) becomes y21 = x3
1 + 15750 and its S-integral solutions are

(x1, y1) = (−5, ±125), (
345

16
, ±10275

64
), (99, ±993).
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These furnish us with the following values of Y :

Y = −5

9
, −55

9
, 15

26
, −52 53

26 3
, 281

15
, −127

5
,

Again by Remark 4 the above values do not lead to a solution. Therefore, when c = 5,
(3.4) has no solutions.

When c = 5/2, the elliptic curve defined by (3.8) is of zero rank with trivial torsion
subgroup, hence there are no rational solutions.

When c = 5/4, (3.8) becomes y21 = x3
1 +

7875
8

and its S-integral solutions are

(x1, y1) = (−159

16
, ±111

64
) , (

1

4
, ±251

8
) , (

15

2
, ±75

2
) , (

81

4
, ±771

8
) , (

165

2
, ±750),

with the corresponding values of Y being

Y =− 7 · 109
24 · 15

, , −32 · 31
24 · 5

, − 72

90
, −19 · 29

90
, 0, −22 5

3
, 157

30
, −7 · 17

10
,

10 · 19
3

, −70.

Similar to the above case these values of Y do not lead to a solution of (3.4).

Conclusion: No solutions to (3.4) exist.

Equation (3.5): We put b− β = 3b1 + j with 0 ≤ j ≤ 2. Then, in (3.5) we have

Y =
22(α−a)z61
56b1+2j

, X =
z2

53b1+j
, 2

5b−β
X3 = cX3

1 ,

where

c =
2

5j
, X1 =

z2
24b1+j

.

Thus we consider equation (3.8) with c ∈ {2, 2/5, 2/25}. Now X, Y and X1 are
S-integers with S = {5}, and (x1, y1) is S-integral solution to (3.8).

If c = 2, then (3.8) becomes y21 = x3
1 + 2520. Its S-integral solutions are

(x1, y1) = (−6, ±48), (−66

25
, ±6252

125
) , (9, ±57), (46, ±316),

and the corresponding values of Y are

Y = −2

3
, −6, −24 13

3 · 53
, −22 191

53
, −1

6
, , −13

2
, 27

32
, −22 47

32
,

and none of these values of Y lead to a solution of (3.5).

When c = 2/5, the elliptic curve defined by (3.8) is of zero rank with trivial torsion
subgroup, hence there are no rational solutions.
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When c = 2/25, (3.8) becomes y21 = x3
1 +

504
125

, the S-integral solutions of which are

(x1, y1) = (
1

25
, ±251

125
) , (

6

5
, ±12

5
) , (

81

25
, ±771

125
) , (

66

5
, ±48),

with the corresponding values of Y being

Y = − 72

90
, −19 · 29

90
, 0, −22 5

3
, 157

30
, −7 · 17

10
, 10 · 19

3
, −70.

However, no non-zero value of Y lead to a solution of (3.5).

Conclusion: No solutions to (3.5) exist.

Equation (3.6): Now, X, Y in equation (3.6) are integers and this equation is
equivalent to y21 = x3

1 + 63000, where x1 = 30X and y1 = 30(3Y + 10). All integer
solutions of this equation (if we forget the above special form of x1, y1) are

(x1, y1) = (1, ±251), (30, ±300), (81,±771), (330, ±6000),

from which only the solution (x1, y1) = (330,−6000) returns to a non-zero integral
solution (X, Y ), namely, (X, Y ) = (11,−70). But this value of Y is not of the form
required by (3.6).

Conclusion: No solutions to (3.6) exist.

In view of our previous conclusions we have shown that equation (3.2) has no
solutions which proves the following:

Proposition 5. Equation (2.1) with n = 3 is impossible.

3.3. The case n = 5. Suppose (x, z) is a solution of (2.1) for n = 5. Let r =
gcd(x, d), then x = x1r and d = d1r with gcd(x1, d1) = 1, hence r5 | z5 and conse-
quently r | z. Setting z = rz1 we obtain the equation

(x1 − d1)
5 + x5

1 + (x1 + d1)
5 = z51 , gcd(x1, d1) = 1.

By Theorem 1.1 of [6], this equation has nonzero integer solutions only when d1 = 2, in
which case the only solution is (x1, z1) = ±(1, 3). It follows that d = 2r, which shows
that, in d = 2a5b we have a ≥ 1, hence r = 2a−15b and (x, z) = ±(2a−15b, 3 · 2a−15b) =
±(d/2, 3d/2). Thus we have proved the following:

Proposition 6. Equation (2.1) with n = 5 has integer solutions only if a ≥ 1, in
which case its integer solutions are given by (x, z) = ±(d/2, 3d/2).

4. The modular method for n ≥ 7

In this section we prove that there are no solutions of (2.1) when n is a prime
greater or equal to 7. In the proof we make use of the modular method which has
its origin in the proof of Fermat’s Last Theorem [42]. The main idea in the modular
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method is to attach Frey-Hellegourach curves associated with our equations and using
the modularity of elliptic curves [42, 40, 13], the work of Mazur [30] and Ribet’s level-
lowering theorem [34], to compare Galois representations. For the rest of the section
we assume that n ≥ 7 is a prime.

Before we study the equations (2.8)-(2.15) with the modular method, we have to
recall some standard results and terminology. The reader can find a more detailed
exposition of the techniques and ideas in, for example, [18, Chapter 15].

Suppose f is a cuspidal newform of weight 2 and level Nf with q-expansion

f = q +
∞∑
i=2

ai(f)q
i.

We denote by Kf the eigenvalue field of f and say that f is irrational if [Kf : Q] > 1
and rational otherwise. Suppose n is a rational prime and n | n a prime ideal in Kf .
Then, we can associate a continuous, semisimple Galois representation

ρ̄f,n : Gal(Q̄/Q) → GL2(F̄n),

that is unramified at all primes � � nNf and Tr(ρ̄f,n(Frob�)) ≡ a�(f) (mod n) where
Frob� is a Frobenius element at �.

Suppose E is an elliptic curve over Q with conductor NE. For a prime � of good
reduction for E, we let a�(E) = � + 1 − #Ẽ(F�), where Ẽ is the reduction of E at
�. We denote by ρ̄E,n the Galois representation of Gal(Q̄/Q) acting on the n-torsion
subgroup of E.

The following proposition provides a standard technique that is used to bound n;
its origin goes back to Serre [36].

Proposition 7. Suppose f is a cuspidal newform of weight 2, level Nf and trivial
character with eigenvalue field Kf . We assume that ρ̄f,n � ρ̄E,n where ρ̄f,n is the
residual representation of Gal(Q̄/Q) associated to f and n | n is a prime ideal in Kf .
Let � �= n be a prime, then

• if � � NENf then a�(f) ≡ a�(E) (mod n),
• if � � Nf and �‖NE then a�(f) ≡ ±(�+ 1) (mod n),

where a�(f) is the Hecke eigenvalue of f at �.

4.1. Frey-Hellegourach curves of signature (n, n, 2). We apply the recipes of
Bennett and Skinner [9, Section 2] to equations (2.8)-(2.15). According to the different
values of a− α and b− β we attach the corresponding Frey-Hellegourach curve.

Case I. We consider the equations (2.8) and (2.9). We recall that a ≥ α and b ≥ β.
For any value of a − α, the equation (2.8) satisfies the conditions of case (ii) in [9,
Section 2].
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Case Equation Frey-Hellegourach Curve

a ≥ α + 2 (2.8) EI,1 : Y
2 = X3 + 20(z1

2n + 22(a−α)52(b−β))X2 + 70z1
4nX

(2.9) FI,1 : Y
2 +XY = X3 − 3z2n1 +22(a−α)+152(b−β)+1+1

4
X2

+7 · 24(a−α)−554(b−β)+1X

a = α (2.8) EI,2 : Y
2 = X3 + 20(z1

2n + 52(b−β))X2 + 70z1
4nX

(2.9) FI,2 : Y
2 = X3 + 2(3z1

2n + 2 · 52(b−β)+1)X2 + 14 · 54(b−β)+1X

a = α + 1 (2.8) EI,3 : Y
2 = X3 + 20(z1

2n + 4 · 52(b−β))X2 + 70z1
4nX

(2.9) FI,3 : Y
2 = X3 − (3z1

2n + 8 · 52(b−β)+1)X2 + 56 · 54(b−β)+1X

Table 3. Frey-Hellegourach curves for the case I. It holds a ≥ α and β ≤ b.

Case Equation Frey-Hellegourach Curve

a ≥ α + 2 (2.10) EII,1 : Y
2 = X3 + 4(52(β−b)z2n1 + 22(a−α))X2 + 14 · 54(β−b)−1z4n1 X

(2.11) FII,1 : Y
2 +XY = X3 − 3·52(β−b)z2n1 +5·22(a−α)+1+1

4
X2 + 35 · 24(a−α)−5X

a = α (2.10) EII,2 : Y
2 = X3 + 4(52(β−b)z2n1 + 1)X2 + 14 · 54(β−b)−1z4n1 X

(2.11) FII,2 : Y
2 = X3 + 10(3 · 52(β−b)−1z2n1 + 2)X2 + 70X

a = α + 1 (2.10) EII,3 : Y
2 = X3 + 4(52(β−b)z2n1 + 4)X2 + 14 · 54(β−b)−1z4n1 X

(2.11) FII,3 : Y
2 = X3 − (3 · 52(β−b)z2n1 + 40)X2 + 280X

Table 4. Frey-Hellegourach curves for the case II. It holds a ≥ α and
β > b.

Next we focus on equation (2.9). Suppose that a ≥ α + 2, then we are in case (v)
in [9, Section 2]. When a = α then we are in case (ii) and when a = α + 1 then we
are in case (iv) in [9, Section 2]. The Frey-Hellegouarch curves are represented in the
Table 3.

Case II. We consider the equations (2.10) and (2.11). We recall that a ≥ α and
β > b. For any value of a− α, the equation (2.10) satisfies the conditions of case (ii)
in [9, Section 2].

Next we turn to equation (2.11). Suppose that a ≥ α + 2, then we are in case (v)
in [9, Section 2]. When a = α then we are in case (ii) and when a = α + 1 then we
are in case (iv) of [9, Section 2]. The Frey-Hellegouarch curves are represented in the
Table 4.
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Case Equation Frey-Hellegourach Curve

α ≥ (a+ 2) (2.12) EIII,1 : Y
2 +XY = X3 +

5(22(α−a)z2n1 +52(b−β))−1

4
X2

+35 · 24(α−a)−7z4n1 X

(2.13) FIII,1 : Y
2 = X3 + 4(3 · 22(α−a)−1z2n1 + 52(b−β)+1)X2 + 14 · 54(b−β)+1X

α = a+ 1 (2.12) EIII,2 : Y
2 = X3 + 5(4z2n1 + 52(b−β))X2 + 70 · z4n1 X

(2.13) FIII,2 : Y
2 = X3 + 4(6z2n1 + 52(b−β)+1)X2 + 14 · 54(b−β)+1X

Table 5. Frey-Hellegourach curves for the case III. It holds α ≥ a+1
and b ≥ β.

Case Equation Frey-Hellegourach Curve

α ≥ (a+ 2) (2.14) EIV,1 : Y
2 +XY = X3 + 22(α−a)−252(β−b)z2n1 X2

+7 · 24(α−a)−754(β−b)−1z4n1 X

(2.15) FIV,1 : Y
2 = X3 + 20(3 · 22(α−a)−152(β−b)−1z2n1 + 1)X2 + 70X

α = a+ 1 (2.14) EIV,2 : Y
2 = X3 + (4 · 52(β−b)z2n1 + 1)X2 + 14 · 54(β−b)−1z4n1 X

(2.15) FIV,2 : Y
2 = X3 + 20(6 · 52(β−b)−1z2n1 + 1)X2 + 70X

Table 6. Frey-Hellegourach curves for the case IV. It holds α ≥ a+1
and β ≥ b+ 1.

Case III. We consider the equations (2.12) and (2.13). We recall that α ≥ a+1 and
b ≥ β. For any value of a− α, the equation (2.13) satisfies the conditions of case (ii)
of [9, Section 2].

Now we focus on equation (2.12). If α ≥ a+2, then we are in case (v) of [9, Section
2]. When α = a + 1, we are in case (iv) of [9, Section 2]. The Frey-Hellegouarch
curves are represented in the Table 5.

Case IV. We consider the equations (2.14) and (2.15). We recall that α ≥ a+1 and
β ≥ b+ 1. For any value of a− α, the equation (2.15) satisfies the conditions of case
(ii) in [9, Section 2].

We turn to equation (2.14) now. If α ≥ a+2, then we are in case (v) of [9, Section
2]. When α = a + 1, we are in case (iv) of [9, Section 2]. The Frey-Hellegouarch
curves are represented in the Table 6.

Let E = Ei,k or Fi,k as above. We denote by ρ̄E,n the Galois representation of
Gal(Q̄/Q) acting on the n-torsion points of E.

Proposition 8. The representation ρ̄E,n is absolutely irreducible.
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Frey curve Discriminant Δ(E) Nn(E)

EI,1 29 · 53 · 72 · (z2z81)n 28 · 52 · 7
FI,1 28(a−α)−10 · 3 · 58(b−β)+2 · 72 · zn2 2 · 3 · 5 · 7
EI,2 29 · 53 · 72 · (z2z81)n 28 · 52 · 7
FI,2 28 · 3 · 58(b−β)+2 · 72 · zn2 27 · 3 · 5 · 7
EI,3 29 · 53 · 72 · (z2z81)n 28 · 52 · 7
FI,3 210 · 3 · 58(b−β)+2 · 72 · zn2 23 · 3 · 5 · 7
EII,1 29 · 58(β−b)−2 · 72 · (z2z81)n 28 · 5 · 7
FII,1 28(a−α)−10 · 3 · 53 · 72 · zn2 2 · 3 · 52 · 7
EII,2 29 · 58(β−b)−2 · 72 · (z2z81)n 28 · 5 · 7
FII,2 28 · 3 · 53 · 72 · zn2 27 · 3 · 52 · 7
EII,3 29 · 58(β−b)−2 · 72 · (z2z81)n 28 · 5 · 7
FII,3 210 · 3 · 53 · 72 · zn2 23 · 3 · 52 · 7
EIII,1 28(α−a)−14 · 53 · 72 · (z2z81)n 2 · 52 · 7
FIII,1 29 · 3 · 58(b−β)+2 · 72 · zn2 28 · 3 · 5 · 7
EIII,2 26 · 53 · 72 · (z2z81)n 25 · 52 · 7
FIII,2 29 · 3 · 58(b−β)+2 · 72 · zn2 28 · 3 · 5 · 7
EIV,1 28(α−a)−14 · 58(β−b)−2 · 72 · (z2z81)n 2 · 5 · 7
FIV,1 29 · 3 · 53 · 72 · zn2 28 · 3 · 52 · 7
EIV,2 26 · 58(β−b)−2 · 72 · (z2z81)n 25 · 5 · 7
FIV,2 29 · 3 · 53 · 72 · zn2 28 · 3 · 52 · 7

Table 7. The discriminant and Nn(E) of the Frey-Hellegouarch curves.

Proof. This is an immediate consequence of [9, Corollary 3.1], based on work by
Mazur [30], and the fact that z1z2 �= ±1. �

Let

Nn(E) = N(E)

/ ∏
q|z1z2

q.

Proposition 9. Suppose ρ̄E,n is as above. Then there exists a newform f of trivial
character, weight 2 and level Nn(E) and a prime ideal n | n of Kf such that

ρ̄E,n � ρ̄f,n.

Proof. This is an immediate consequence of modularity of elliptic curves [42, 40, 13],
Proposition 8, Table 7 and Ribet’s level lowering [34]. �

In Table 7, we have computed the Nn(E) of ρ̄E,n according to [9, Lemmas 2.1 and
3.3].
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5. Proof of Theorem 1 for n ≥ 7

Proof of Theorem 1. Suppose (x, z) is a solution of the equation (2.1) for some value
of d, where d = 2a5b with a, b ≥ 0 are integers and n ≥ 7 is a prime. As we explain
in Section 2, there exist integers z1, z2, u1 and u2 with (z1, z2) = 1, (z1z2, 10) = 1 and
u1, u2 are {2, 5}-units such that

x = u1z
n
1 ,

P = u2z
n
2 ,

where P = 3x4+20d2x2+10d4. According to the valuation of u1, u2 and d at 2 and 5
we have four possible cases (I)-(IV) and for each case we construct two Fermat type
equations of signature (n, n, 2) for the pair (z1, z2); the equations (2.8)-(2.15). From
the work of Bennett and Skinner [9] we attach two Frey-Hellegouarch curves Ei,k and
Fi,k for each case and pair (z1, z2), as we have explained in Section 4 (see Tables 3-6).

We denote by ρ̄Ei,k
and ρ̄Fi,k

the Galois representation of Gal(Q̄/Q) acting on the
n-torsion points of Ei,k and Fi,k, respectively. We denote by Nn(Ei,k) and Nn(Fi,k)
the Serre level of ρ̄Ei,k

and ρ̄Fi,k
, respectively (see Table 7). Then, from Proposition

9, we know that there exists a newform f (resp. g) of weight 2, trivial character and
level Nn(Ei,k) (resp. Nn(Fi,k)) such that ρ̄f,n � ρ̄Ei,k

(resp. ρ̄g,n′ � ρ̄Fi,k
) where n | n

(resp. n′ | n) is a prime ideal of Kf (resp. Kg).

Because for each pair (z1, z2) we have attached two Frey curves we apply the pow-
erful multi-Frey approach to get a bound for n [15, 16]. Suppose � �= 2, 3, 5, 7 is a
prime. We define Δa = |a− α| and Δb = |b− β|. We also define

R�(f) =

{
N

Kf/Q
(a�(Ei,k)− a�(f)) , � � Δ(Ei,k),

N
Kf/Q

((�+ 1)2 − a2�(f)) , � | Δ(Ei,k),

where Δ(Ei,k) is the discriminant of Ei,k. Similarly, we define

R′
�(g) =

{
N

Kg/Q
(a�(Fi,k)− a�(g)) , � � Δ(Fi,k),

N
Kg/Q

((�+ 1)2 − a2�(g)) , � | Δ(Fi,k),

where Δ(Fi,k) is the discriminant of Fi,k. It is important to mention that both R�(f)
and R′

�(g) depend on the residue class of (z1, z2) modulo � and (Δa,Δb) modulo (�−1).
Now let

T�(f, g) = � ·
∏

(z1,z2)∈F2
� ,

(Δa,Δb)∈(Z/(�−1)Z)2

gcd(R�(f), R
′
�(g)).

From Proposition 7, we know that if a solution (z1, z2) arises from the pair of newforms
(f, g) then it should hold n | T�(f, g).

We have written a Magma script that computes U(f, g) = gcd�≤B(T�(f, g)) where
B is a suitable positive integer. For the majority of the pairs (f, g) it is enough to
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consider B = 19 to deduce that n ≤ 5. However, there are a few pairs (f, g) for which
we have to increase B up to 59 to get n ≤ 5. The total amount of time for the above
computations was roughly 56 hours.

In Table 8 we give a summary of the data for the spaces of newforms that we had
to compute, together with the amount of time Magma needed to compute the spaces.
It is important to note that there are two ways of computing weight 2 modular forms
in Magma, either the classical approach, or using the package of Hilbert newforms
viewing classical newforms as Hilbert newforms over Q [21]. The package of Hilbert
newforms is faster in current implementation of Magma (Magma V2.25-3) and the
total amount of time was roughly 146 hours with the most expensive case to be the
space of level 134400 and 107 hours to be computed. �
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Level Dimension #conjugacy (d, #newforms of degree d) Time
classes

2 · 5 · 7 1 1 (1, 1) ∼ 1 sec
2 · 3 · 5 · 7 5 5 (1, 5) ∼ 1 sec
2 · 52 · 7 10 8 (1, 6), (2, 4) ∼ 1 sec

23 · 3 · 5 · 7 12 11 (1, 10), (2, 2) ∼ 3 sec
2 · 3 · 52 · 7 18 18 (1, 18) ∼ 4 sec
25 · 5 · 7 24 20 (1, 16), (2, 8) ∼ 3 sec

23 · 3 · 52 · 7 58 43 (1, 32), (2, 14), (3, 12) ∼ 1 min
25 · 52 · 7 114 52 (1, 22), (2, 32), (3, 12), ∼ 1 min

(4, 16), (5, 20), (6, 12)
28 · 5 · 7 192 64 (1, 20), (2, 24), (3, 36) ∼ 22 sec

(4, 16), (6, 96)
27 · 3 · 5 · 7 192 112 (1, 64), (2, 56), (3, 36), ∼ 2 min

(4, 16), (5, 20)
28 · 3 · 5 · 7 384 128 (1, 48), (2, 32), (3, 48), ∼ 30 min

(4, 112), (6, 48), (8, 96)
28 · 52 · 7 912 196 (1, 52), (2, 64), (3, 36), ∼ 2 h

(4, 88), (5, 40), (6, 168)
(8, 96), (9, 72), (12, 192),

(16, 32), (18, 72)
27 · 3 · 52 · 7 912 356 (1, 176), (2, 128), (3, 36) ∼ 36 h

(4, 144), (5, 140), (6, 48)
(7, 168), (9, 72)

28 · 3 · 52 · 7 1824 396 (1, 124), (2, 120), (3, 60), ∼ 107 h
(4, 208), (5, 40), (6, 240),
(8, 224), (9, 72), (10, 80)

(11, 88), (12, 192), (13, 104)
(16, 192), (20, 80)

Table 8. Data for newform computations.
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[3] A. Argáez-Garćıa and V. Patel. On perfect powers that are sums of cubes of a seven term
arithmetic progression. J. Number Theory, 214:440–451, 2020.

[4] D. Bartoli and G. Soydan. The Diophantine equation (x + 1)k + (x + 2)k + · · · + (lx)k = yn

revisited. Publ. Math. Debrecen, 96(1-2):111–120, 2020.
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