期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:133
Explicit upper bounds for the Stieltjes constants
Article
Eddin, Sumaia Saad
关键词: Stieltjes coefficients;    Dirichlet characters;    L-functions;    Gauss sums;    Functional equation;    Matsuoka's formula;   
DOI  :  10.1016/j.jnt.2012.09.001
来源: Elsevier
PDF
【 摘 要 】

Text. Let chi be a primitive Dirichlet character modulo q and let (-1)(n)gamma(n)(chi)/(n!) (for it larger than 0) be the n-th Laurent coefficient around z = 1 of the associated Dirichlet L-series. When chi is non-principal, (-1)(n)gamma(n)(chi) is simply the value of the n-th derivative of L(z, chi) at z = 1. In this paper we give an explicit upper bounds for vertical bar gamma(n)(chi)vertical bar For q <= pi/2 e(vertical bar n-1 vertical bar/2)/n+1. In particular, when q = 1 the explicit upper bound we get improves on earlier work. We conclude this paper by showing that we can altogether dispense in these proofs with the functional equation of L(z, chi). Video. For a video summary of this paper, please click here or visit http://www.youtube.com/watch?v=q340UciEvAA. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2012_09_001.pdf 215KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次