期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:141
On Jesmanowicz' conjecture concerning primitive Pythagorean triples
Article
Terai, Nobuhiro
关键词: Pythagorean triples;    Exponential Diophantine equations;    Generalized Fermat equations;    Linear forms in two logarithms;   
DOI  :  10.1016/j.jnt.2014.02.009
来源: Elsevier
PDF
【 摘 要 】

In 1956, Jesmanowicz conjectured that the exponential Diophantine equation (m(2) - n(2))(x) + (2mn)(y) = (m(2) + n(2))(x) has only the positive integer solution (x, y, z) = (2, 2, 2), where m and n are positive integers with m > n, gcd(m,n) = 1 and m not equivalent to n (mod 2). We show that if n = 2, then Jesmanowicz' conjecture is true. This is the first result that if n = 2, then the conjecture is true without any assumption on m. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2014_02_009.pdf 230KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:1次