期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:201
Stochastic canonical heights
Article
Healey, Vivian Olsiewski1  Hindes, Wade2 
[1] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
[2] Texas State Univ, Dept Math, 601 Univ Dr, San Marcos, TX 78666 USA
关键词: Heights;    Global fields;    Zsigmondy sets;   
DOI  :  10.1016/j.jnt.2019.02.020
来源: Elsevier
PDF
【 摘 要 】

We construct height functions defined stochastically on projective varieties equipped with endomorphisms, and we prove that these functions satisfy analogs of the usual properties of canonical heights. Moreover, we give a dynamical interpretation of the kernel of these stochastic height functions, and in the case of the projective line, we relate the size of this kernel to the Julia sets of the original maps. Finally, as an application, we establish the finiteness of some generalized Zsigmondy sets over global fields. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2019_02_020.pdf 1199KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次