期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:201 |
Stochastic canonical heights | |
Article | |
Healey, Vivian Olsiewski1  Hindes, Wade2  | |
[1] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA | |
[2] Texas State Univ, Dept Math, 601 Univ Dr, San Marcos, TX 78666 USA | |
关键词: Heights; Global fields; Zsigmondy sets; | |
DOI : 10.1016/j.jnt.2019.02.020 | |
来源: Elsevier | |
【 摘 要 】
We construct height functions defined stochastically on projective varieties equipped with endomorphisms, and we prove that these functions satisfy analogs of the usual properties of canonical heights. Moreover, we give a dynamical interpretation of the kernel of these stochastic height functions, and in the case of the projective line, we relate the size of this kernel to the Julia sets of the original maps. Finally, as an application, we establish the finiteness of some generalized Zsigmondy sets over global fields. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2019_02_020.pdf | 1199KB | download |