期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:211 |
Diophantine approximation over Piatetski-Shapiro primes | |
Article | |
Li, Taiyu1  Liu, Huafeng2  | |
[1] Shandong Univ Weihai, Sch Math & Stat, 180 Wenhua Xilu, Weihai 264209, Shandong, Peoples R China | |
[2] Shandong Normal Univ, Sch Math & Stat, 88 Wenhua Donglu, Jinan 250014, Shandong, Peoples R China | |
关键词: Diophantine inequalities; Piatetski-Shapiro primes; Additive problems; Exponential sums; | |
DOI : 10.1016/j.jnt.2019.10.002 | |
来源: Elsevier | |
【 摘 要 】
Let c > 1 and 0 < gamma < 1 he real. In this paper, we study the solubility of the Diophantine inequality vertical bar P-1(c) + P-2(c) + center dot center dot center dot + p(s)(c) - N vertical bar < epsilon in Piatetski-Shapiro primes p(1), p(2), ... ,p(s) of the form p(j) = [m(1/gamma)] for some m epsilon N, and improve the previous results of Kumchev and Petrov [20]. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2019_10_002.pdf | 709KB | download |