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1. Introduction

Let 0 < v < 1 be a fixed real number. In [24] Piatetski-Shapiro considered the question
whether the sequence

Ny ={n €N :n=[m'"] for some m € N}

contains infinitely many primes. For the number 7 (NN) of primes p < N that belong
to N, he proved that when v > 11/12, one has the asymptotic formula

.
WW(N) - log N

(14 O(®log N)™1). (1.1)

Such prime numbers p € N, have become known as Piatetski-Shapiro primes (of index ),
and the work on it has attracted a lot of attention [1,10,12-15,17,22,25] culminating in
the result of Rivat and Wu [26] who proved that 7 (NN) — oo for v > 205/243.

Another problem proposed by Piatetski-Shapiro [23] around the time he proved (1.1)
investigates the solubility of the Diophantine inequality

Ip{ +p5+--+pi—N|<e (1.2)

in primes p1, p2, ..., ps, Where the exponent ¢ > 1 is not an integer, € > 0 is a fixed small
number, and N is a large real number. Denote by H(c) the least integer s such that (1.2)
has solutions for sufficiently large N. It was proved in [23] that

H(c) < c(4loge+ O(loglogc))

for large ¢, and H(c) < 5 for 1 < ¢ < 3/2. About forty years later Tolev [27] obtained
H(e) <3 for 1 < ¢ < 15/14. Afterwards it has motivated a series of improvements on
sums of both three and five powers of primes. In particular, one can chart the develop-
ments in [3-7,16,19] and [2,8,21,28-30] for the two problems, respectively. For instance,
the best result to date for three powers of primes was built in a recent work of Cai [6]
with a statement that H(c) < 3 for 1 < ¢ < 43/36.

Note that the sequence of Piatetski-Shapiro primes of index ~ is a “thin” set of
primes, and gets thinner as v decreases. As researchers in additive number theory often
ask whether different additive questions can be resolved in prime numbers from thin
sets, Piatetski-Shapiro primes have become very favorite to accomplish this goal. Very
recently, Kumchev and Petrov [20] proposed to explore the solubility of the Diophan-
tine inequality (1.2) in Piatetski-Shapiro primes. More precisely, they established in the
ternary case the following variant of Tolev’s result in [27], i.e. for sufficiently large N,
the inequality

|p§ +p5 +p§ — N| < (log N)~* (1.3)
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has solutions in prime numbers p1, pa, ps € N, with v <1 < ¢ and 15(c — 1) + 28(1 —
v) < 1. In this paper, we are able to extend the range of v and ¢ to 8(¢—1)4+21(1—v) < 1.

Theorem 1. Let v < 1 < ¢ and 8(c — 1) + 21(1 — ) < 1. Then for sufficiently large N,
the inequality (1.3) has solutions in prime numbers p1, pa,ps € N.

Actually the proof of Theorem 1 can be easily adapted to establish the following
companion results on the binary and quaternary inequalities.

Theorem 2. Let (c,7) € {(c,7) : 7 <1 <¢, 21(c—1)+33(1—7) < 4, 5(c—1)+15(1—7) <
1,9(c—-1)4+35(1 —7) < 2}. Then for sufficiently large N, the inequality

[p§ + 5 +p§ +p§ — N| < (log N) ™
has solutions in prime numbers p1,...,ps € N.

Theorem 3. Let (c,7) € {(c,7) : 7 <1 <¢, 21(c—1)+33(1—7) < 4, 5(c—1)+15(1—7) <
1,9(c—1)+35(1 —v) < 2}. For a large Z, let E(Z) denote the set of N € (Z/2,Z) for
which the inequality

Ip§ +p5 — N| < (logN)~*

has no solutions in prime numbers p1,ps € N,. Then the Lebesque measure of the ex-
ceptional set E(Z) is O(Z exp(—(log Z)1/4)).

Remark. We note here that the area of pair (¢, ) in Theorems 2 and 3, i.e. the set {(c7 v) :
Y<1<e2l(c—1)+33(1—7) <4,5(c—1)+15(1—7) <1,9(c—1)+35(1—v) < 2},
can be expressed explicitly as

{(c,7):45(c—1)+175(1—~) <1}, f0<c—1<1/8;
(¢;7) €% {(e,7) :5(c—1) +15(1 —v) < 1}, if 1/8 < c—1<9/50; (1.4)
{(c,7):5.25(c—1)+8.25(1—~) <1}, if9/50 <c—1<4/21.

o

The range (1.4) for v and ¢ satisfied in Theorems 2 and 3 can be compared with the
previous result in [20], where the same conclusions were established but for v < 1 < ¢
and

8(c—1)+21(1 —~) < 1.

The theorems are proved by the circle method, and our improvement benefits from
efforts in handling the minor arcs. For the number s of prime variables in the inequality
(1.2) under consideration, traditional treatment as in [20] reveals that one can take
out s — 2 exponential sum(s) (over prime numbers) from the integral on minor arcs
to borrow its upper bound estimate, and then inject the mean value estimate of the
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remaining integral of Vinogradov type shown in (2.9). By a different approach, we first
fix one exponential sum and exchange the order of the summation and the integration.
Then an appeal to Cauchy’s inequality brings out a double integral with the integrands
of exponential sums S(6; X) and T(0; X ). Note that the exponential sum 7'(¢; X) takes
values over integers rather than prime numbers. Such an argument hence allows a more
flexible choice and relaxes the restriction over the exponential sums. As a result, we can
get a better estimate and enlarge the area of pair (c,7). See §3.2 below and the argument
between (3.7) and (3.12) for details.

To conclude this section, we would like to mention that Kumchev and Petrov also
established in [20] a general result for ¢ > 5, ¢ ¢ N and 1 — (8¢ + 12¢+12) "t <y < 1,
which states that when s > 4clogc + 4¢/3 + 10 the inequality (1.2) with ¢ = (log N)~*
has solutions in Piatetski-Shapiro primes.

As usual, the letter p, with or without subscripts, is always reserved for prime num-
bers. The letter  denote a fixed positive number which can be chosen arbitrarily small;
its value need not be the same in all occurrences. Sometimes we use z ~ X as an
abbreviation for z € (X/2, X].

We write e(z) = ™% and V., (n) = ¢ (—(n+1)7) —¢(—n?), with ¢(z) = z—[2] — 1/2.
We also write N, (X) = N, N (X/2, X] and define several generating functions:

S:; X)= Y (logp)e(fp®), TO:;X)= > e(n),

PEN,(X) neN, (X)
So(0; X) = Z vp" " (log p)e(dp°), To(0; X) = Z Y te(On),
p~X n~X
Z U, (p)(log p)e(dp®), T(0; X) = Z U, (n)e(fn®)
p~X n~X
X
V(O; X) =~ / ' Le(fuc)du.
X/2

2. Auxiliary lemmas

Lemma 2.1 (/20, Lemma 1]). Let (a,) be a sequence of complex numbers with |a,| < A.
Then

Z an—vzan'yl—FZan n) + O(AX7™1).

TLGN,Y (X) n~X n~X

In particular, Lemma 2.1 yields

N
=
>
I
5
=
>
X
=
s
+
©
<
i
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Lemma 2.2 (/20, Lemma 2]). Let (ay) be a sequence of complex numbers with |a,| < A.
When 0 < o < (2y —1)/3 and X7t < H < X7727 one has

Z a,Uy(n) < sup Z min (X771, [h|71)

Z ane(h(n+u)?)| + AX"7°.
n~X wefony 1<Inl<H

Y<n<X

Lemma 2.3. Let v, ¢, h, 0 be real with v,c¢ > 0. For uw € {0,1} and Y ~ X, one has

Z e(h(n+u)" 4 6n°) < FY/2 4 pt/6x1/2 4 p=183x,
Y<n<X

with F = |h| X7 + |0] X°.

Proof. One can quote Lemma 3 with = 2 and Lemma 4 with r = 3 in [20], or Lemma 12
in [20] with M = 1, to establish the desired bound. O

Lemma 2.4. Let v <1 < ¢ and T(c — 1) +10(1 —v) < 1, and |8] < X? for a sufficiently
small § > 0. Then one has

T1(0; X) < X329,

Proof. We prove this lemma by considering two cases X77¢° < |f] < X° and |6] <
X,
First we handle the case X779 < |§| < X°. Using Lemma 2.2, one has

Ty(0;X) < sup Y min (X771 (A7)

Z e(h(n+u)Y +6n°)| + X77°.
w0y 1<|hl<H

Y<n<X

Then by Lemma 2.3, the first term on the right hand side is

< Y min (XL RTYFY2 4 > min (X7 b7 FYOX?

1<|h|<H 1<|h|<H
+ Y min (X771 |p[THFTVEX
1<|h|<H
=: 21 + 22 + 23,

where F' < |h| X" + |§|X¢. By noting X779 < |§| < X?, one has

5 < XO((HXY)Y? + X¢/?),
By < XYEO(HXM)YO 4 x°/9),

23<<X1_7/3( Z XA TV Z |h|_4/3)+X1—7/3+6
|[h|<X1=Y |h|>X1=7
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< X1T/3+9,

Taking H = X777 with 0 = 2(c — ) + §, and putting ¥, and X3 together, we
have

T1(0; X) < X°(X(F0)/2 4 xo/2 4 x(ta)/6 4 xB+e)/6 4 x1-9/3) 4 x7=7 (2.3)
< )(i’rnycfﬁ7

provided that 7(c —1) + 10(1 —v) < 1.

In the case |§] < X?¢% we actually have F' < |h|X?. Then following a similar
argument to the first case, we can also get T1(6; X) < X3772¢79 which completes the
proof of Lemma 2.4. 0O

Lemma 2.5. Suppose the pair (c,) satisfies v < 1 < ¢ and runs over {(c,v) : 13(c—1) +
121 —7) <2,6(c—1)+7(1 —v) < 1}, and X770 < |0| < X? for a sufficiently small
0 > 0. Then one has

To(0; X) < X3772¢70,
Proof. By Lemma 2.3 with A = 0, we have

D e(tn®) < FV2 4 FYOXV2 4 TS,
n~X

where F' < |0|X¢. Noting that ¢ < 7/6 < 3/2 and X7~¢7% < |§| < X?, we obtain

Z e(enc) < XC/6+1/2+5/6+X1—’Y/3+5/3. (24)
n~X

Then by (2.4) and partial summation, we have

To(0; X) < X V+e/6-1/2+5/6 + X27/3+6/3 (2.5)
< X37*20*5’

provided that (¢,v) € {(¢,7v) : 13(c— 1) +12(1 — ) < 2,6(c — 1) + 7(1 — ) < 1}. Then
the lemma follows. O

Lemma 2.6. Suppose the pair (c,v) satisfies v < 1 < ¢ and runs over {(c,v) : 21(c—1) +

33(1 —7) <4,9(c—1)+17(1 — ) < 2}, and |0] < X? for a sufficiently small § > 0.
Then one has

Ti(0; X) < X©Bv=3)/2=8,
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Proof. The proof is essentially same as that of Lemma 2.4, but taking o = 3(c—7v)/2+4§
n (2.3), then the desired bound follows under the hypothesis (¢,7v) € {(¢,7) : 21(c—1)+
3B1—7v)<4,9(c—-1)+17(1—-~)<2}. O

Lemma 2.7. Suppose the pair (c,v) satisfies v < 1 < ¢ and runs over {(c,v) : 10(c—1) +
9(1—7)<2,9(c—1)+11(1 —v) <2}, and X779 < || < X? for a sufficiently small
0 > 0. Then one has

To(0; X) < XB1=3)/279,

Proof. By (2.5), we get Tp(6; X) < X©7=30/2-9 provided that (c,v) € {(c,7) : 10(c —
D)+9(1-79)<2,9(c—-1)+11(1-v)<2}. O

Lemma 2.8. Let |§| > 0, and M < N < 2M. Then for any exponent pair (a,b) with
0<a<1/2<b<1, one has

> e(On®) < (10|M)* MO+ Melo]
M<n<N

Proof. By a splitting argument, one can essentially discuss three cases according as
|O|Me—t < 1/2,1/2 < [9|M1 < 1 or |§|M°e! > 1, and quote the treatment of [9,
Theorems 2.1 & 2.2] and of [11, §2.3], respectively, to achieve the desired estimate. One
can also refer to [6, Lemma 2.2] for a detailed explanation. O

Next we quote the following estimates on Sy(6; X) and S1(6; X) from [20, Lemmas 11
& 14].

Lemma 2.9. Let 6p < v < 1 < ¢ < 3/2—6p and X77¢7° < |0| < X? for a sufficiently
small § > 0 and a fized p € (0,1/12). Then one has

So(0; X) < X7=PH0,

Lemma 2.10. Let 1 —p < v < 1 < ¢ and X7~°7° < |0| < X° with a sufficiently small
0 >0 and p > 0 that satisfies

c+14p<2, 2y+14p<3, 2c+12p<3. (2.6)

Then one has

S1(6; X) < X1t

Lemma 2.11. Suppose the pair (c,7) satisfies v < 1 < ¢ and runs over {(¢,v) : 9(c—1) +
35(1—7) <2,5(c—1)+15(1—v) < 1}, and X=¢79 < |0| < X? for a sufficiently small
0 > 0. Then one has

S(0; X) < X®r=e)/4=9, (2.7)
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Proof. By (2.1), it suffices to show that
S;(0; X) « X®Cr=9/4=0 (j=0,1).
Lemma 2.9 with p = (¢ —v)/4 + 26 yields the bound on Sy(#; X), provided that
5c—1)+3(1—7v) < 1.

On the other hand, we appeal to Lemma 2.10 with p = (4 + ¢ — 57)/4 + 20 to estimate
S1(0; X), hence the conditions (2.6) turn into

9ec—1)+35(1—-v) <2, T(c=1)+31(1—-79)<2, 5c=1)+15(1—7) < 1.

It then follows that (2.7) holds under the hypothesis (¢,v) € {(¢,7) : 9(c—1)+35(1—7) <
2,5(c—1)+15(1—7) <1}. O

Lemma 2.12. Let v < 1 < c and 8(c — 1) +21(1 —7) < 1, and X7~¢79 < |0] < X? for a
sufficiently small 6 > 0. Then one has

S(0; X) < X By—e)/2-6 (2.8)
Proof. Actually (2.8) has been established in [20, Corollary 16]. Alternatively, we can re-
peat the proof of Lemma 2.11, but alter the choices of p: namely, we appeal to Lemma 2.9
with p = (¢ —7)/2+ 26 and to Lemma 2.10 with p = (2+ ¢ — 37v)/2 + 26, to achieve the
bound of S(0; X) under the hypothesis 8(c — 1) +21(1 —~v) < 1. O

Lemma 2.13. Let L =log X, and I is an interval in R. Then one has

/|V(0; X)|Pdo < X*°L,

I

/ |S(0; X)|?d0 < |I|XL? + X2~ °L3. (2.9)
I

Proof. The two inequalities are (35) and (32) in [20]. O
3. Proof of the theorems

Let X = (N/2)/¢ and 7 = (log N)~!. Since log X =< log N, we use L to denote both
log N and log X. We consider

IpS + - +ps — N| <,

with p; € Ny(X), j=1,...,s,and s = 3 or 4. Let us fix a kernel K € C*>°(R) such that
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K(t) >0, 31,(493) < K(z) < 1;(x),

where 17 is the indicator function of the interval I = [—1,1]. We can ensure these
conditions by choosing K to be a convolution of the form K = K x K, where K € C*>°(R)
is even and satisfies 1;(4z) < K(z) < 17(2z). We consider the quantity

R(N) = Z {H(logpj)}KT(pi+...+pg_N),
D1y ENY(X)  J=1
where K, = K(z/7). By Fourier inversion,
ROV = [ 5(0:X)e(-No)0,

R

where d,0 = I/(\T(Q)dg. Note that because of the compact support of the kernel K, we
have K, (0) < TK(70) < 7. We will analyze the last integral to show that

R(N) > tX77¢. (3.1)
Let > 0 be sufficiently small, and set
M= (—X"7"°° X779, m={f:X7°°<|g <X}
Then R(N) can be expressed as
R(N) = {/4—/4— / } S(0; X)’e(—NO)d, 0.
meoom =X
In general, the contribution of large 0 is the easy part. Actually we can obtain

1S(0; X)|°d, 0 < TX57 e (3.2)

|o]>X7?

by the same argument leading to [20, (39)]. Therefore, we shall concentrate on dealing
with the contribution from the major arc 9 and minor arcs m.

3.1. The estimation over M
Set

W) = / V(6; X)*e(—~N6)d, 0,
R
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3.(N) = / V(0; X)*e(~ NO)d.0.
m

Since Lemma 3.1 in [9] gives
V(0; X) < X707,

we deduce that

I3(N) = 3.(N)| < / [V (6; X)|*d,0 <« X7+, (3.3)

Xv—c—9

On the other hand, (49) in [20] indicates that when 6 € 90, one has
S(0; X) = V(0; X) + O(X7~21(X)),

with 7(X) = (log X)~3/%. Applying this and Lemma 2.13, together with the trivial bound
S(0; X) <« X7, we obtain

‘/S(Q;X)Se(—NG)dTG—J*(N)
m
< [ ]8(6; X)° — V(6; X)%|d-0
/
< T/ |5(0: X) = V(0; X)|(IS(0:; X)|*~" + [V (6; X)[*~1)do
m

<<TX7_2"(X)X(S_3)"’</S(G;X)2d9+/|V(9;X)|2d9>
m m

< TXsmenX), (3.4)

Moreover, a standard Fourier integral argument (similar to the proof of Lemma 6 in [27],
for example) yields

J(N) > r7X°577°. (3.5)

Now by (3.3), (3.4) and (3.5), we get

/S(@; X)’e(—NO)d 0 > 7X°77¢. (3.6)
m
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3.2. The estimation over m

Now we focus on the integral over m. We have

‘/S(@;X)Se(NQ)dTG <

5> (o) / S(6; X) (5 — N)0)d, 6

PEN,(X)

<L > ‘/SGXSl n®— N)6)d.6|.

neN, (X)

It follows from Cauchy’s inequality, (2.2) and (2.9) that

2

’/S(G;X)Se(—NH)dTG

2
< X7L? ’/S&X“ n¢ — N)§)d. 0
neN,(X)

<<X7L2// S(01;X)*1S(02; X) > e(nc(01—92))d791d702’

neN, (X)

< X”LQ// S0 X)* S0 + 62; X)* T(6: X)d- 6.0

m m*

< X”LZ// S(HQ;X)S‘ls(G+92;X)s‘1T0(9;X)d79dT92‘

m m*
+X7L2// ‘S(GZ;X)5*15(9+92;X)5*1T1(9;X)d79d792’
m m*

+ X370 max | S(6; X))

fcm

_— (3.7)

where m* :=m — f = {X77¢79 — 0y < |§] < X° — 65}. The argument in (3.7) is similar

to Zhao’s work. By using Lemmas 2.4 and 2.12 if s = 3 or Lemmas 2.6 and 2.11 if s = 4,
together with (2.9) again, one can estimate the double integral associated with 77 by

// ‘5(92;)()8—15(9 + 92;X)s‘1T1(9;X)dT9d792‘

m m*
< X2+ max’S (6, X)| =3 max |T1(6; X)|
16]< X5
< 72X @51y =260, (3.8)

The last term in (3.7) can be bounded similarly by applying Lemma 2.12 or Lemma 2.11
to S(6; X) according as s = 3 or 4.
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In order to handle the integral associated with Ty, we write m* = m; U my with
m;y =m"Nm, my =m* NIM.
Thus the double integral turns into
//1592, S(6 + 6; X)2 Ty (6; X)d, 0d, 92]_// // (3.9)
m m* m m; m mso
Similar to (3.8), but using Lemmas 2.5 and 2.7 instead of Lemmas 2.4 and 2.6 (respec-
tively) to bound Ty (6; X), we get
/ / ’S(OQ;X)HS(M92;X)S*1T0(9;X)d79d702\ < 72X @smy=2e=0 (3 1()
m mj
On the other hand, we write the double integral with 6 over my as

// ‘5(92;)()8*15(9 + 92;X)5*1T0(9;X)d70d702’

m mo

S

m |g|<X—c m X-cg|f|<Xv—e=9

= Jl + JQ.

Note that in both of the inner integrals on the right hand side, the variable 6 is restricted
to run over the arcs ma. By trivial estimate Tp(6; X) < X7 and (2.9), we obtain

S < X”-Igleax|5(9;X)]28_4/|S(92;X)|2d792 / d,0

o]<X—e
< 72X max |S(6; X)|25_4
fem
<« 72X (251200 (3.11)

where Lemmas 2.11 and 2.12 (depending on s = 4 or 3) are utilized in the last step. For
|0] > X ¢, by Lemma 2.8 with the exponent pair (1/2,1/2), one has

(9 X><<X’y 1 Z (’9 << |9|1/2X0/2+'y 1+X'y p‘el iy
n~X

It then follows that
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Jo < X271 / / ‘5(92; X)*7LS(6 + 0 X)S‘1|9|1/2d79d792‘
m X -eg|f|<Xv—e—d
+XH/ / ]S(QQ;X)HS(G+92;X)S*1|9|*1d79d792‘
m X-eL]g|<Xv—ed
=: Ja1 + Joz,
where Jy; < 72X 77/2-1+40 -max |S(0; X)’Qs_6 & 72X @s=1)y=2e=8 4
em
e 25—4 2 d. o
Joo < X7 ~maX|S(9;X)| |S(02;X)| d, 05 —
fem |9|
m X-c<|f|<X7—e=8

< X7 max | S(6; X)|2874
fem
< T2X(2571)'y72c75

with the same treatment as (3.11) when quoting Lemmas 2.11 and 2.12 to bound S(6; X).
Combining the estimates on J; and Js, we deduce that

//15(92;)()8*15(%02;)()5*1TO(@;X)dTadTa2 < 72X 257y =2e20 - (319)

m mso

Collecting (3.7)—(3.10) and (3.12) all together, we get

/ (6 X)*e(—N6)d, 0 < 7X*7—0. (3.13)

The desired bound (3.1) now follows from (3.2), (3.6) and (3.13). This completes the
proof of Theorems 1 and 2.

3.8. Comments on the proof of Theorem 3

We can prove Theorem 3 by following the similar argument in [20], but here we
still present a brief explanation for completeness. When s = 2 and N ~ Z, we set
X = (22/3)"/¢ and 7 = (log Z)~!, and then structure the proof similarly to the case
s = 4, replacing the pointwise bounds (3.6) and (3.13) withe the mean-square inequalities

Z 2
/ ’ / (S(0; X)* = V(0; X)?)e(-=NO)d, 0| AN < 72X+ ~e7nX) (3.14)

Z/2 M

and
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Z
2
/ ’/S(&;X)%(—Na)dTa dN < r2Xx4=e9, (3.15)

Z/2 m

From these inequalities, we see immediately that the bounds (3.6) and (3.13) with s = 2
fail for a set of Lebesgue measure < Z'~(X) To complete the proof, we remark that
an appeal to Plancherel’s theorem (see [18, (4.6)]) deduces (3.14) and (3.15) from basic
estimates for S(6; X) (e.g., (2.7) for the case s = 4) that were used earlier to establish
(3.6) and (3.13).
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