期刊论文详细信息
| JOURNAL OF NUMBER THEORY | 卷:201 |
| On the representations generated by Eisenstein series of weight n+3/2 | |
| Article | |
| Horinaga, Shuji1  | |
| [1] Kyoto Univ, Grad Sch Math, Kyoto 6068502, Japan | |
| 关键词: Siegel modular forms; Nearly holomorphic modular forms; Eisenstein series; Automorphic forms; | |
| DOI : 10.1016/j.jnt.2019.02.007 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We consider the Eisenstein series E(z, s; k, chi, N) of weight k = (n + 3)/2, level N > 1 and a Dirichlet character chi modulo N such that chi(2) = 1. Shimura proved that E(z, k/2; k, chi, N) is a nearly holomorphic function. We prove that E(z, k/2; k, chi, N) generates an indecomposable reducible (g, K)-module of length 2. These are new examples of indecomposable reducible (g, K)-modules generated by nearly holomorphic modular forms. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jnt_2019_02_007.pdf | 419KB |
PDF