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We consider the Eisenstein series E(z, s; k, χ, N) of weight k =
(n + 3)/2, level N > 1 and a Dirichlet character χ modulo N
such that χ2 = 1. Shimura proved that E(z, k/2; k, χ, N) is a 
nearly holomorphic function. We prove that E(z, k/2; k, χ, N)
generates an indecomposable reducible (g, K)-module of 
length 2. These are new examples of indecomposable reducible 
(g, K)-modules generated by nearly holomorphic modular 
forms.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Let G and Hn be the real symplectic group of degree n and the Siegel upper half 
space of degree n, respectively. Let K be the maximal compact subgroup of G which 
stabilizes i = i · 1n ∈ Hn. We denote by Kc the complexification of K. Let g and k
be the complexification of the Lie algebra of G and K, respectively. We then have the 
well-known decomposition

g = p+ + k + p− (1.1)
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where p+ (resp. p−) is corresponding to the holomorphic tangent space (resp. anti-
holomorphic tangent space) at i ∈ Hn. For an element g = ( a b

c d
) ∈ G and a, d ∈ Matn(R), 

we let ag = a, bg = b, cg = c, and dg = d. For a finite-dimensional representation (ρ, V )
of Kc and a V -valued C∞ function f , we define a V -valued function fρ on G by

fρ(g) = ρ(cgi + dg)−1f(g(i)), g ∈ G. (1.2)

Then, by [12], a function f is nearly holomorphic if and only if fρ is p−-finite under the 
right translation. We then call a C∞ function ϕ on G nearly holomorphic type if the 
function ϕ is p−-finite. Fix a congruence subgroup Γ of Sp2n(Q). We define the space of 
nearly holomorphic automorphic forms A(Γ)p−-fin on G with respect to Γ by the space 
of scalar valued C∞ functions ϕ which satisfy the following conditions:

• ϕ is nearly holomorphic type.
• ϕ is left Γ invariant.
• ϕ is right K-finite.
• ϕ is right Z-finite.
• ϕ is slowly increasing.

Here, the algebra Z is the center of the universal enveloping algebra of g. Then the space 
A(Γ)p−-fin is a (g, K)-module by the right translation. Pitale-Saha-Schmidt proved the 
structure theorem of A(Γ)p−-fin for n = 1, 2 in [7] and [8]. For a dominant weight λ, let 
N(λ) and N(λ)∨ be a parabolic Verma module of highest weight λ with respect to a 
parabolic subalgebra p = p− + k and its contragredient module, respectively. Then the 
module N(λ) has a unique irreducible quotient L(λ).

Theorem 1.1 ([7]). If n = 1, as a (g, K)-module, we have a decomposition

A(Γ)p−-fin ∼=
⊕

k∈Z>0

nkL(k) ⊕N(0)∨.

Here the multiplicity nk is the dimension of holomorphic modular forms of weight k with 
respect to Γ. Moreover the weight 2 Eisenstein series E2 generates N(0)∨.

Theorem 1.2 ([8]). If n = 2, as a (g, K)-module, we have a decomposition

A(Γ)p−-fin ∼= C ⊕
⊕

(i,j)∈Z2,i≥j≥1

ni,jL(i, j) ⊕
⊕

i∈Z≥0

miN(i + 3, 1)∨.

Here the multiplicities ni,j and mi are the dimension of the suitable subspace of nearly 
holomorphic modular forms with respect to Γ. Moreover, if Γ is the full modular group 
Sp2n(Z), the multiplicities mi are zero for all i.
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Unfortunately, no examples of modular forms, except E2, which generate indecompos-
able reducible modules are known. In this paper, we give new examples of such modular 
forms.

For an element α ∈ G and z ∈ Hn, we define a factor of automorphy j by j(α, z) =
det(cαz + dα). Let P be the Siegel parabolic subgroup of G. Then we consider the 
Eisenstein series

E(z, s) = E(z, s; k, χ,N) =
∑

α∈(P∩Γ)\Γ
χ(det(dα))j(α, z)−k|j(α, z)|−s+k/2.

Here z ∈ Hn, s ∈ C, k ∈ 2−1Z, N ∈ Z>0, χ is a Dirichlet character modulo N and Γ is a 
congruence subgroup of Sp2n(Q) depending on k and N . Suppose n > 1, k = (n + 3)/2, 
χ2 = 1, and N > 1. Then the Eisenstein series E(z, k/2) is not a holomorphic function 
but a nearly holomorphic function. Note that when n = 1, we let χ = 1 and N = 1 and 
then the Eisenstein series is equal to E2.

Let E∗(z, s) = E∗(z, s; k, χ, N) be the Eisenstein series defined by Shimura. Here E∗

is given by the right translation of certain Siegel Eisenstein series E by the suitable 
element at finite places, i.e., there exists an element γ ∈ Sp2n(Q) such that we have 
E∗(z, s) = (E|kγ)(z, s). We suppose that n > 1, k = (n +3)/2, χ2 = 1, and N > 1. Then 
the Eisenstein series E∗(z, k/2) is a nearly holomorphic modular form. We now state the 
main theorem of this paper. For simplicity, we let

k = (k, . . . , k) ∈ Qn, k − 2 = (k − 2, . . . , k − 2) ∈ Qn.

Theorem 1.3. Under the above assumptions, the Eisenstein series E∗(z, k/2) generates 
N(k − 2)∨ as a (g, K)-module.

Note that there exists a unique non-split exact sequence

0 −→ L(k − 2) −→ N(k − 2)∨ −→ L(k) −→ 0.

In particular the module N(k − 2)∨ has length 2. These are new examples of indecom-
posable reducible modules generated by nearly holomorphic modular forms. The Fourier 
coefficients and the constant term of E∗(z, k/2), calculated by Shimura, play the key roll 
of our proof.

Acknowledgment The author would like to thank my supervisor Tamotsu Ikeda for 
his kind advice and helpful discussions.

2. Notation

1. The symbols Z, Q, R, C, Zp and Qp have the usual meaning. The symbol A be the 
adele ring of Q.
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2. For any commutative ring R and a positive integer n, Matn(R) is the ring of n × n

matrices with entries in R. If A ∈ Matn(R), we let tA be its transpose. Let Symn(R)
be the set of symmetric matrices in Matn(R). For a Hermitian matrix M , we say 
M > 0 if M is positive definite. For 1 ≤ i, j ≤ n, let

ei,j = (δi,kδj,l)k,lMatn(R).

Here δ is the Kronecker’s delta function.
3. We denote by GLn and Sp2n the algebraic groups defined by

GLn(R) = {g ∈ Matn(R) | det g ∈ R×},
Sp2n(R) = {g ∈ GL2n(R) | tgJng = Jn},

where R is a commutative ring and Jn = ( 0 −1n

1n 0 ), respectively. For any element in 

g = ( a b
c d

) ∈ Mat2n(R) with a, d ∈ Matn(R), write a = ag, b = bg, c = cg and d = dg. 
We define a maximal compact subgroup K of Sp2n(R) by

K = {g ∈ Sp2n(R) | ag = dg, bg = −cg}.

Let Kc be the complexification of K.
4. For z ∈ Matn(C), we let z̄ its complex conjugate. We also let

∂

∂z
= 1

2

( ∂

∂x
−

√
−1 ∂

∂y

)
,

∂

∂z̄
= 1

2

( ∂

∂x
+

√
−1 ∂

∂y

)
,

where z = x +
√
−1 y ∈ Matn(C) and x, y ∈ Matn(R).

5. The Siegel upper half space of degree n is defined by

Hn = {z ∈ Matn(C) | tz = z,
√
−1 (z̄ − z) > 0}.

6. Let g be the Lie algebra of Sp2n(C), i.e., we have g = {X ∈ Matn(C) | tXJn+JnX =
0}. For a Lie algebra a, we let U(a) denote the universal enveloping algebra of a.

7. For manifolds M and N , we denote by C∞(M, N) the space of C∞ functions from 
M to N .

3. The category Op

In this section, we will review the theory of the category Op. A more complete theory 
may be found in [3]. It is well-known that there exists a decomposition g = p+ + k + p−
as in (1.1).

Here Lie algebras g, k and p± are described as follows

g = {x ∈ Mat2n(C) | txJn + Jnx = 0}, k = {x ∈ g | ax = dx, bx = −cx},
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p+ = {x ∈ g | ax = −
√
−1 bx = −

√
−1 cx = −dx},

p− = {x ∈ g | ax =
√
−1 bx =

√
−1 cx = −dx}.

It is well-known that the Lie algebras g and k have the same Cartan subalgebra. The 
root system of g is

Φ = { ±(ei + ej), ±(ek − el) | 1 ≤ i ≤ j ≤ n, 1 ≤ k < l ≤ n }.

We declare the set

Φ+ = { −(ei + ej), ek − el | 1 ≤ i ≤ j ≤ n, 1 ≤ k < l ≤ n }

to be a positive root system.
Let ρ be half the sum of positive roots. We let Λ = {λ = (λ1, . . . , λn) ∈ Rn | λi−λi+1 ∈

Z≥0, i = 1, . . . , n − 1}. We regard ei as a vector (0, . . . , 0, 1, 0, . . . , 0) ∈ Λ canonically. 
We say that a weight λ = (λ1, . . . , λn) ∈ Rn is dominant if λ1 ≥ · · · ≥ λn holds. Note 
that a dominant weight is dominant with respect to the positive root system of k and is 
not dominant with respect to g in general. Let Λ+ be the set of dominant weights. For a 
dominant weight λ ∈ Λ+, we denote by ρλ an irreducible U(k)-module of highest weight 
λ. Let Vλ be any model of ρλ. We consider Vλ a module for p = p− + k by letting p− act 
trivially. Let

N(λ) = U(g) ⊗U(p) Vλ.

The modules N(λ) are often called the parabolic Verma module of highest weight λ with 
respect to p. It is well-known that the module N(λ) has a unique irreducible quotient 
L(λ). We denote by χλ an infinitesimal character of L(λ). By Harish-Chandra’s Theorem, 
an infinitesimal character χλ is equal to χμ if and only if λ = w ·μ holds for some w ∈ W , 
where W is the Weyl group of g and w · λ = w(λ + ρ) − ρ.

The category Op is defined to be the full subcategory of the category of U(g)-modules 
whose objects M satisfy the conditions (Op1), (Op2), and (Op3).

(Op1) M is a finitely generated U(g)-module.
(Op2) Viewed as a U(k)-module, M is a direct sum of finite-dimensional irreducible 

modules.
(Op3) M is locally p−-finite.

In this section, for simplicity, let

k = n + 3
2 , k − 2 = (k − 2, . . . , k − 2), k = (k, . . . , k),

λ =
(n + 3

,
n + 1

, . . . ,
n + 1)

, μ =
(n + 1

, . . . ,
n + 1

,
n− 1)

.
2 2 2 2 2 2
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Here, we have k − 2, k, λ and μ ∈ Qn.
We will classify indecomposable U(g)-modules in Op with an infinitesimal charac-

ter χk.

Lemma 3.1. Let X be the set of dominant weights ω such that ω = w ·k for some w ∈ W . 
We then have

X = {k − 2, k, μ, λ}.

Proof. For each w ∈ W ∼= Sn� (Z/2Z)n, there exist elements σ ∈ Sn and τ ∈ (Z/2Z)n
such that w = στ . For a subset I ⊂ {1, . . . , n}, we define τI ∈ (Z/2Z)n by

τI((ω1, . . . , ωn)) = (εI(1)ω1, . . . , εI(n)ωn),

where we let

εI(j) =
{

1 if j /∈ I

−1 if j ∈ I.

Note that for any τ ∈ (Z/2Z)n there exists a unique subset I ⊂ {1, . . . , n} such that 
τ = τI . Given τ ∈ (Z/2Z)n, it is easy to see that the weight (στ) · k is dominant for 
some σ ∈ Sn only if the weight (ω1, . . . , ωn) = τ(k + ρ) satisfies ωi �= ωj for every i �= j. 
Therefore we have (στI) · k is dominant for some σ ∈ Sn if and only if we have

n + 3 − j ∈ I for any j ∈ I. (3.1)

It is easy to see that τI · k is equal to one of the following weights up to the action of 
σ ∈ Sn

k − 2, k, μ, λ

for any I which satisfy (3.1). Indeed, up to the action of σ ∈ Sn, weights τI · k and 
(τI∪{j,n+3−j}) · k are same for any 3 ≤ j ≤ n. This completes the proof. �

We note that a highest weight of a parabolic Verma module with an infinitesimal 
character χk are equal to one of the elements in X .

Lemma 3.2. The following non-split exact sequences exist:

0 −→ N(k) −→ N(k − 2) −→ L(k − 2) −→ 0,

0 −→ N(λ) −→ N(μ) −→ L(μ) −→ 0.
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Proof. By the calculation of first reduction points in the sense of [1], the modules N(k)
and N(λ) are irreducible (see the proof of Proposition 4.2). Moreover, we can prove 
that the modules N(k − 2) and N(μ) are reducible. Indeed, the weights k − 2 and μ are 
exactly same as the first reduction points. Let Λ++ = {(ω1, . . . , ωn) ∈ Λ+∩Zn | ωn ≥ 0}. 
Since the polynomial algebra U(p+) is isomorphic to 

⊕
ω∈2Λ++ Vω as a U(k)-module, the 

modules N(k − 2) and N(μ) are isomorphic to the following modules

N(k − 2) =
( ⊕

ω∈2Λ++

Vω

)
⊗ Vk−2, N(μ) =

( ⊕
ω∈2Λ++

Vω

)
⊗ Vμ,

as U(k)-modules, respectively. Therefore, the modules N(k − 2) and N(μ) are multipli-
city-free as U(k)-modules. By the same method, the modules N(k) and N(μ) are 
multiplicity-free as U(k)-modules. Since N(k) and N(λ) are reducible, they have proper 
submodules. Since U(k)-modules ρk and ρλ do not occur in N(μ) and N(k − 2), respec-
tively, the following exact sequences exist:

0 −→ N(k) −→ N(k − 2), 0 −→ N(λ) −→ N(μ).

Neither N(k − 2)/N(k) nor N(μ)/N(λ) contain the modules N(k) = L(k) and N(λ) =
L(λ) as U(k)-modules. Therefore the quotient modules N(k − 2)/N(k) and N(μ)/N(λ)
must be irreducible. We then obtain the desired exact sequences

0 −→ N(k) −→ N(k − 2) −→ L(k − 2) −→ 0, (3.2)

0 −→ N(λ) −→ N(μ) −→ L(μ) −→ 0. (3.3)

Since a Verma module has a unique irreducible quotient, the exact sequences (3.2) and 
(3.3) are non-split. �
Lemma 3.3. Suppose that weights x and y belong to X . Then the following assertions 
hold.

dimC ExtOp(L(x), L(y)) =
{

1 (x, y) = (k, k − 2), (k − 2, k), (λ, μ), (μ, λ)
0 otherwise.

(1)

ExtOp(L(x), N(k − 2)∨) = 0, ExtOp(L(x), N(k − 2)) = 0, (2)

for all x ∈ {k − 2, λ, μ}.

ExtOp(L(x), N(μ)∨) = 0, ExtOp(L(x), N(μ)) = 0, (3)

for all x ∈ {k − 2, k, μ}.

ExtOp(N(x), N(y)) = 0, ExtOp(N(x)∨, N(y)∨) = 0, (4)
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for all x, y ∈ {k − 2, μ}.

ExtOp(N(x), N(y)∨) = 0, ExtOp(N(x)∨, N(y)) = 0, (5)

for all x, y ∈ {k − 2, μ}.

ExtOp(N(k), N(k − 2)) = 0, ExtOp(N(λ), N(μ)) = 0. (6)

Proof. We first prove (1). By [3, Proposition 3.1 (d)], the case x = y is clear. Since we 
have λ ≮ k and N(λ) = L(λ), we have

ExtOp(L(k), L(λ)) ∼= ExtOp(L(λ), L(k)) = 0

by [3, Proposition 3.1 (a) and Theorem 3.2 (c) and (e)]. Since L(k) and L(λ) are the 
maximal submodules in N(k − 2) and N(μ), respectively, we have

C ∼= HomOp(L(k), L(k)) ∼= ExtOp(L(k − 2), L(k)),

C ∼= HomOp(L(λ), L(λ)) ∼= ExtOp(L(μ), L(λ)),

by [3, Proposition (c)]. Consider the dual modules, then this proves the case (x, y) =
(k, k − 2), (k − 2, k), (λ, μ), (μ, λ). Let x = k − 2. We then consider the following exact 
sequence

0 −→ L(y) −→ M −→ L(k − 2) −→ 0

for y = λ, μ and a module M . We may assume that the exact sequence is non-split. Let 
v be a non-zero vector of weight k − 2 in M . Then the vector v generates M and hence 
M is a quotient of N(k − 2). By Lemma 3.2, we have M ∼= N(k − 2). This contradicts 
to the condition on y. Therefore we have

ExtOp(L(k − 2), L(λ))) ∼= ExtOp(L(k − 2), L(μ))) ∼= 0.

This proves the case that x or y is equal to k − 2. Similarly we proved the case that x
or y is equal to μ. This completes the proof of (1).

Next, we will prove (2). By Lemma 3.2, we have a long exact sequence

0 −→ Hom(L(x), L(k − 2)) −→ Hom(L(x), N(k − 2)∨) −→ Hom(L(x), L(k))

−→ Ext(L(x), L(k − 2)) −→ Ext(L(x), N(k − 2)∨) −→ Ext(L(x), L(k)) −→ · · ·

Here we set Hom = HomOp and Ext = ExtOp If x = λ or μ, it is easy to see that 
ExtOp(L(x), N(k − 2)∨) = 0 by (1) and by computing the long exact sequence. If x = k

or k − 2, we have

ExtOp(L(k), N(k − 2)∨) = ExtOp(N(k − 2), L(k)) = 0,



214 S. Horinaga / Journal of Number Theory 201 (2019) 206–227
ExtOp(L(k − 2), N(k − 2)∨) = ExtOp(N(k − 2), L(k − 2)) = 0

by Proposition 3.1 and Proposition 3.12 of [3] and k − 2 > k. We can prove (3) similarly.
Calculating long exact sequences, we obtain (4), (5) and (6). We omit the details. �
In order to give the complete classification, we recall properties of indecomposable 

projectives. For a dominant weight ω ∈ Λ+, let P (ω) be the projective cover of L(ω), i.e., 
the surjective map P (ω) −→ L(ω) is essential (cf. [3, section 3.9]). Then the projective 
cover P (ω) is indecomposable. For an object M in Op, we say that the module M has 
a standard filtration if there exists a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M such 
that each quotient module Mi+1/Mi is isomorphic to some parabolic Verma module with 
respect to p. If a module M has a standard filtration, let (M : N(ω)) be the multiplicity of 
N(ω) in the standard filtration. By the universality of Verma modules, the multiplicity 
(M : N(ω)) is well-defined. We also let [M : L(λ)] be the multiplicity of L(λ) in the 
Jordan-Hölder sequence.

Theorem 3.4 ([3] Chapter 9). The following statements hold:

(1) The category Op has enough projectives.
(2) The projective cover P (λ) has a standard filtration.
(3) If x, y ∈ Λ+, we have

(P (x) : N(y)) = [N(y) : L(x)].

We then get the following Lemma.

Lemma 3.5. For x ∈ X , we have the following assertions:

(1) For x = k − 2, μ, the projective cover P (x) is isomorphic to N(x).
(2) The projective cover P (k) has a filtration 0 ⊂ P1 ⊂ P (k) such that we have

P1 ∼= N(k − 2), P/P1 ∼= N(k) ∼= L(k).

Moreover the projective module P (k) is self-dual, i.e., P (k) ∼= P (k)∨.
(3) The projective cover P (λ) has a filtration 0 ⊂ P1 ⊂ P (λ) such that we have

P1 ∼= N(λ), P/P1 ∼= N(λ) ∼= L(λ).

Moreover the projective module P (λ) is self-dual, i.e., P (λ) ∼= P (λ)∨.

Proof. By Theorem 3.4, it is sufficient to prove the self-duality of projective covers. By 
some computations of long exact sequences, we have
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dimC ExtOp(L(k), N(k − 2)) ≤ 1, dimC ExtOp(L(λ), N(μ)) ≤ 1.

Since projective covers P (λ) and P (k) are indecomposable, we have

dimC ExtOp(L(k), N(k − 2)) = 1, dimC ExtOp(L(λ), N(μ)) = 1.

By taking the dual, we have

0 −→ L(k) −→ P (k)∨ −→ N(k)∨ −→ 0

Let v be a non-zero vector of weight k − 2 in P (k). Then, the vector v generates L(k − 2)
or N(k − 2). If the vector v generates L(k − 2), the quotient P (k)∨/L(k − 2) is isomor-
phic to L(k) ⊕L(k) by Lemme 3.3. Since the socle of P (k) is L(k) and the module P (k)
has a unique quotient L(k), it is contradiction. Hence the vector v generates N(k − 2). 
Therefore we have a non-split exact sequence

0 −→ N(k) −→ P (k)∨ −→ L(k) −→ 0.

Hence the projective cover P (k) is self-dual. Similarly, the projective cover P (λ) is self-
dual. This completes the proof. �

Let Op

χk,1 and Op

χk,2 be the full subcategory of Op whose an object is a direct sum of

L(k − 2), N(k − 2), N(k − 2)∨, L(k), P (k),

and

L(μ), N(μ), N(μ)∨, L(λ), P (λ),

respectively.
Lemma 3.3 and 3.5 imply the following two corollaries:

Corollary 3.6. Let M be an indecomposable U(g)-module with an infinitesimal character 
χk. Then the module M is isomorphic to one of the following modules

L(k), L(k − 2), N(k − 2)∨, N(k − 2), P (k),

L(μ), L(λ), N(μ)∨, N(μ), P (λ).

Corollary 3.7. The categories Op

χk,1 and Op

χk,2 are closed under extension and we have

ExtOp(N1, N2) = ExtOp(N2, N1) = 0

for any N1 ∈ Op

χ ,1 and N2 ∈ Op

χ ,2.
k k



216 S. Horinaga / Journal of Number Theory 201 (2019) 206–227
By the calculation of K-types and Lemma 3.2, we have

Corollary 3.8. Let ρk be an irreducible U(k)-module of highest weight k. Then the K-type 
ρk does not occur in modules L(k − 2) and M for any object M in Op

χk,2.

4. Modular forms and differential operators

We define the functions ri,j on Hn by Im(z)−1 = (ri,j(z))i,j for z ∈ Hn. For a polyno-
mial P in n(n +1)/2 variables with coefficients in C, we let rP = P ((ri,j)1≤i≤j≤n). Given 
a representation of (ρ, V ) of Kc, we call a V -valued C∞ function f nearly holomorphic if 
there exist finite number of polynomials P and V -valued holomorphic functions fP such 
that we have

f(z) =
∑
P

rP (z)fP (z), z ∈ Hn.

For a congruence subgroup Γ and a representation (ρ, V ) of Kc, we say that a V -valued 
C∞ function f is a nearly holomorphic modular form of K-representation ρ with respect 
to Γ if f satisfies the following conditions (NH1), (NH2) and (NH3).

(NH1) f is a nearly holomorphic function.
(NH2) f(γ(z)) = ρ(cγz + dγ)f(z) for all γ ∈ Γ and z ∈ Hn.
(NH3) f satisfies the cusp condition.

The cusp condition means that for any nearly holomorphic function f which satisfies the 
conditions (NH1) and (NH2) with Fourier expansion

f(z) =
∑

h∈Symn(Q)

c(h, y) exp(2πi tr(hz)),

we have c(h, y) = 0 for any non-semipositive definite matrix h. We denote by Nρ(Γ) the 
space of nearly holomorphic function of K-representation ρ with respect to Γ. By Koecher 
principle, we can remove the condition (NH3) if n > 1. For simplicity, if ρ = detk, we 
say that a modular form which is of K-representation detk is a modular form of weight 
k.

For the convenience, we prove the Koecher principle.

Proposition 4.1 (Koecher principle). Let f : Hn −→ V be a nearly holomorphic function 
of K-representation (ρ, V ) which satisfies the conditions (NH1) and (NH2). We denote 
Fourier expansion of f by

f(z) =
∑

h∈Symn(Q)

c(h, y) exp(2πi tr(hz)).

If n > 1, the condition (NH3) is automatically satisfied.
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Proof. Let N be a level of f . Take a non-semipositive definite matrix h = (hi,j). Then 
there exists a vector v = (v1, . . . , vn) such that vhtv is negative. We may assume that 
integers vi are divisible by N for i ≥ 2 and the greatest common divisor v1, . . . , vn is 1. 
Let α be an element in GLn(Z) such that the first row is v and α ≡ 1n (mod. N) holds. 
Then, the matrix αhtα = (wi,j) satisfies w11 < 0.

Since the function f has a level N , we have

f(βz · tβ) = ρ(tβ−1)f(z), β ∈ GLn(Z), β ≡ 1n (mod. N).

Hence the equality

ρ(tβ)c(tβ−1hβ−1, βytβ) = c(h, y)

holds. In particular, we have

ρ(α−1)c(αhtα, tα−1yα−1) = c(h, y).

Hence we may assume h1,1 < 0.
Fix an imaginary part y. By the definition of nearly holomorphy, there exists a poly-

nomial Ph, depending on h, such that Ph((ri,j(z))) = c(h, y). For a positive integer �, 
let

a� =
(1 �N

1
1n−2

)
.

Since h and y are fixed, there exists a rational polynomial Q(�) with the variable � such 
that the inequality

|c(h, y)| ≤ |Q(�)||c(h, a�y · tap)|

holds as a function of � where | · | is some norm on V .
Combine the above formulas, the following inequality holds:

|c(h, y)| ≤ |Q(�)||c(h, a�yta�)| = |Q(�)||ρ(ta−1
� )c(ta�ha�, y)|.

Therefore, for a certain norm for matrices, we have

|c(h, y)| ≤ |Q(�)||ρ(ta−1
� )||c(ta�ha�, y)|.

The Fourier coefficient c(h, y) can be expressed by

c(h, y) =

⎛⎜⎝ ∫
f(x + iy) exp(2πi tr(hx)) dx

⎞⎟⎠× exp(2π tr(hy)),

Symn(R)/L
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where L and dx is a lattice of Symn(R) and a normalized measure, respectively. By 
taking the absolute value, we have

|c(h, y)| ≤ |M(y)| exp(2π tr(hy)),

where M(y) is a constant depending only on the fixed imaginary part y. To sum it up, 
there exists a polynomial R(�) such that we have

|c(h, y)| ≤ |R(�)||M(y)| exp(2π tr(ta�ha�y)).

Then tr(ta�ha�y) is equal to h1,1y2,2�
2 + O(�). Since we assume h11 < 0 and y2,2 > 0, 

the right hand side is an exponential decay function in �. Take a limit � −→ ∞, we have 
|c(h, y)| = 0. This completes the proof. �

Let σ be a representation of Kc ∼= GLn(C) on the dual space of Symn(C) defined by

(σ(k)h)(x) = h(k−1x · tk−1), h ∈ HomC(Symn(C),C), k ∈ Kc.

For a finite-dimensional representation (ρ, V ) of Kc, we regard the representation ρ ⊗ σ

as the representation on HomC(Symn(C), V ) defined by

((ρ⊗ σ)(k)h)(x) = ρ(k)h(k−1x · tk−1), h ∈ HomC(Symn(C), V ), k ∈ GLn(C).

Let εi,j = (ei,j + ej,i) be basis of Symn(C). For u ∈ Symn(C) define u =
∑

i,j ui,jεi,j . 
We also put z =

∑
i,j zi,jεi,j with zi,j for the variable z ∈ Hn ⊂ Symn(C). Then, for any 

function f ∈ C∞(Hn, V ), we define Df and Ef ∈ C∞(Hn, HomC(Symn(C), V )) by

Df(u) =
∑
i,j

ui,j∂f/∂zi,j , Ef(u)(z) = Df(Im(z)uIm(z))(z)

for u ∈ Symn(C) and z ∈ Hn. Then a C∞ function f is a nearly holomorphic function if 
and only if we have Emf = 0 for some m (cf. [13].)

Given a representation of (ρ, V ) of K, we denote by C∞(G, ρ) the set of all functions 
f in C∞(G, V ) such that f(gk) = ρ(k−1)f(g) for every g ∈ G and k ∈ K. We denote by 
ρc the holomorphic representation of Kc corresponding to ρ. For the sake of simplicity, 
let us say ρc to ρ. For such a (ρ, V ) and f ∈ C∞(Hn, V ), we define fρ ∈ C∞(G, ρ) by 
(1.2). Then a map f �−→ fρ is a C-linear isomorphism of C∞(Hn, V ) onto C∞(G, ρ). 
Now we have

ι(u)gρ = (Eg)ρ⊗σ(u), g ∈ C∞(Hn, V ), u ∈ Symn(C) (4.1)

where ι : Symn(C) ∼−−→ p− defined by

ι(u) =
√
−1

(
tu −

√
−1 tu√

t t

)

4 − −1 u − u
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by [12, section 7]. Hence a C∞ function f is nearly holomorphic if and only if fρ is 
p−-finite. More complete theory of correspondences (4.1) can be found in [12] and [13].

Let Γ be a congruence subgroup of G. Let A(Γ)p−-fin be the space of a scalar valued 
C∞ functions ϕ which satisfy the following conditions (NH’1), (NH’2), (NH’3), (NH’4) 
and (NH’5).

(NH’1) ϕ is left Γ invariant.
(NH’2) ϕ is right U(k) finite.
(NH’3) ϕ is right Z finite.
(NH’4) ϕ is slowly increasing.
(NH’5) ϕ is p−-finite.

Here, the algebra Z is the center of U(g). Then the space A(Γ)p−-fin is a (g, K)-module by 
the right translation. For f ∈ C∞(Hn, V ) and v∗ ∈ V ∗, we have a scalar valued function 
ϕf,v∗(g) = 〈fρ(g), v∗〉 on G. Then, if f is a nearly holomorphic modular form, we have 
ϕf,v∗ ∈ A(Γ)p−-fin by [9] and, moreover, a map f ⊗ v∗ �−→ ϕf,v∗ is a C-linear injective 
map from Nρ⊗V ∗ to A(Γ)p−-fin. The (g, K)-module M generated by ϕf,v∗ is independent 
of the choice of v∗ if ρ is irreducible. Indeed, let v∗1 be a highest weight vector in V ∗. There 
exists an element X ∈ U(k) such that X · v∗ = v∗1 . Then, we have −X · ϕf,v∗ = ϕf,v∗

1 . 
Conversely, there exists an element Y ∈ U(k) such that −Y · ϕf,v∗

1 = ϕf,v∗ . Hence, the 
module M is independent of the choice of v∗. Let Mf = U(g)ϕf,v∗ for v∗ �= 0. We denote 
by Mf the (g, K)-module generated by f .

Proposition 4.2. Let f be a holomorphic modular form. Then the (g, K)-module Mf is 
semisimple.

Proof. We may assume that f is a holomorphic modular form of an irreducible 
K-representation ρλ. Here, the weight λ = (λ1, . . . , λn) is a highest weight of ρλ. Then, 
there exists a canonical exact sequence

N(λ) −→ Mf −→ 0.

Hence, if the Verma module N(λ) is irreducible, the module Mf is irreducible. Let 
p = #{i | λi = λn} and q = #{i | λi = λn+1}. By the calculation of first reduction point 
as in [1], we may assume that λn ≤ n − (p + q + 1)/2. Then, by the square-integrability 
theorem of Weissauer [14, Satz 3], the holomorphic modular form f is square-integrable 
if

p/2 ≤ n− λn.

Therefore, the holomorphic modular form f is square-integrable and, moreover, the 
module Mf is unitarizable. Since N(λ) has the unique irreducible quotient, we have 
Mf

∼= L(λ). This completes the proof. �
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5. Eisenstein series

5.1. Degenerate principal series representation

In this section, we review briefly the degenerate principal series representation of 
the metaplectic groups. For the details, see [5] and [6]. For any real symplectic group 
G = Sp2n(R), we denote by G̃ its metaplectic two fold cover. Let pr: G̃ −→ G be the 
canonical projection. We let K̃ = pr−1(K). For the sake of simplicity, we denote K̃ by 
K. We shall identify G̃ as a set with

G× Z/2Z = {(g, ε) | g ∈ G, ε = ±1}.

The multiplicative relation is described by

(g1, ε1)(g2, ε2) = (g1g2, ε1ε2c(g1, g2))

where c is the Rao’s 2-cocycle of G as in [10]. For a ∈ GLn(R) and b ∈ Symn(R), we 
define l(a), n(b) ∈ G by

l(a) =
(
a 0
0 ta

−1

)
, n(b) =

(
1n b
0n 1n

)
.

Let

L = {(l(a), ε) | a ∈ GLn(R), ε = ±1}

and

N = {(n(b), 1) | b ∈ Symn(R)}.

Then P = LN is a maximal parabolic subgroup of G̃, called the Siegel parabolic sub-
group.

Let χ : L −→ C× be given by

χ((l(a), ε)) = ε ·
{
i if det a < 0
1 if det a > 0.

This is a character of L of order 4. For s ∈ C and α ∈ {1, 2, 3, 4}, let χα
s be the character 

of P given by

χα
s ((l(a), ε) · (n(b), 1)) = | det a|sχ((m(a), ε))α.

For α = 0, 1, 2, and 3, let Iα(s) be the normalized induced representation

Iα(s) = IndG̃
Pχ

α
s .
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We have multiplicity-free decomposition

Iα(s)|K =
⊕

λ∈Λ++

ρ2λ+α
2

as a K-module. Fix v2λ+α
2

to be the unique (up to constant) K-highest weight vector in 
ρ2λ+α

2
. We then consider the K-map given by

m : (p+ + p−) ⊗ ρ2λ+α
2
−→ Iα(s)|K

m(p⊗ v) = p · v.

Since p+ + p− ∼= ρ(2,0,...,0) ⊕ ρ(0,...,0,−2), highest weights μ in (p+ + p−) ⊗ ρλ are of the 
form

λ± ei ± ej , 1 ≤ i ≤ j ≤ n

for a dominant weight λ = (λ1, . . . , λn). For each 1 ≤ j ≤ n, there exists an element 
Xj in U(g) such that Xj · v2λ+α

2
is a constant multiple of v2λ+α

2 ±2ej . Then we have the 
coefficients cλ,j,± ∈ C such that Xj ·v2λ+α

2
= cλ,j,± ·v2λ+α

2 ±2ej . Note that the coefficients 
cλ,j,± is depending only on the choice of the highest weight vectors vλ and elements Xj . 
For suitable choices of vλ and Xj in [5] and [6], we have

cλ,j,± = −s− 1 ±
(n + 1

2 − α

2 + j − λj

)
.

Let Ad: G̃ −→ Aut(g) be the adjoint representation of G̃. Then the algebra U(p±) is 
stable under Ad(k) for k ∈ K. The algebra U(p+) (resp. U(p−)) decompose into⊕

λ

ρλ

where λ runs through weights in Λ+∩2Zn
≥0 (resp. λ runs through weights in Λ+∩2Zn

≤0) 
as a representation of K.

Lemma 5.1. Let α ∈ {0, 1, 2, 3} and k = (n +3)/2. Suppose 2k ≡ α (mod. 4). Let π be an 
irreducible K-subrepresentation in Iα(−1) of highest weight k. Then the representation 
π generates N(k − 2)∨ as a (g, K)-module.

Proof. Let M be the (g, K)-module generated by π. By calculations of cλ,j,±, there exists 
a non-split exact sequence

0 −→ L(k − 2) −→ M −→ L(k) −→ 0.

For details, see [5, section 5]. By Lemma 3.2, the module M is isomorphic to N(k − 2)∨. 
This completes the proof. �
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5.2. Eisenstein series and Fourier coefficients

In this section, we consider the metaplectic group Mp2n as a non-trivial central exten-
sion of Sp2n by the circle S1. We denote by G̃ the central extension by Z/2Z as in the 
previous section. We consider the group G̃ as a subgroup of Mp2n. The map G̃ −→ Mp2n
may found in Kudla’s note [4, Chapter 1] and [10].

Let k = (n +3)/2. We let N be a positive integer greater than 1 if k is an integer. We 
also let N = 4 if k is not an integer. Define a congruence subgroup Γ of Sp2n(Q) by

Γ =
{
{g ∈ Sp2n(Z) | cg ≡ 0 (mod. N)} (k ∈ Z),
{g ∈ Sp2n(Z) | bg ≡ cg ≡ 0 (mod. 2)} (k /∈ Z).

If a weight k is not an integer, the congruence subgroup Γ is a subgroup of the theta 
subgroup (cf. [13]). Fix a Dirichlet character χ modulo N of order 2. Let j(g, z) be a 
factor of automorphy on G ×Hn defined by

j(g, z) = det(cgz + dg), (g, z) ∈ G× Hn.

Let h be a factor of automorphy of weight 1/2 defined in [13, Appendix 2]. Then the 
factor of automorphy h satisfies

h((g, ε), i)2 = t · j(cgi + dg), (g, ε) ∈ Mp2n(R),

with some t ∈ S1. Let jk be a factor of automorphy of weight k defined by

jk =
{
jk if k is an integer
jk−1/2h if k is not an integer.

For every s ∈ C and α ∈ {0, 1, 2, 3}, we take an element δs which belongs to Iα(2s −k)
defined by

δs(g) = j(g, i)k det(Im(g(i)))s−k/2.

We then define the Eisenstein series E(g, s) on the metaplectic group by

E(g, s) = E(g, s; k, χ,N) =
∑

γ∈Γ∩P\Γ
χ(det dγ)δs(γg), g ∈ Mp2n(R).

The Eisenstein series E(g, s) is absolutely convergent for Re(s) ≥ (n + 1)/2. Due to 
Langlands’ theory for Eisenstein series, E(g, s) is meromorphically continued to whole 
s-plane. Note that if k is an integer, E(g, s) can be defined on G via the canonical 
projection pr: Mp2n −→ Sp2n. For z ∈ Hn, we define the function E(z, s) on Hn by

E(z, s) = h(g, i)2kE(g, s), g ∈ G̃ such that g(i) = z.
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This is a well-defined function. In order to compute the Fourier coefficients of Eisenstein 
series, we will twist the Eisenstein series at finite places. Let KA be a subgroup of 
Sp2n(A), the adele valued points of G, defined by

KA = Kfin ×K,

Kfin = {g ∈ Sp2n(Afin) | ag, dg ∈ Matn(Z), bg ∈ Matn(b−1Z), cg ∈ Matn(bNZ)},

where b = 1 and N is a positive integer if k is an integer and b = 1/2 and N = 4
if k is not an integer. Note that the open compact subgroup Kfin is the closure of the 
congruence subgroup Γ in Sp2n(Afin). By the strong approximation in Sp2n(A), for every 
g ∈ Mp2n(A), there exist γ ∈ Sp2n(Q), g∞ ∈ Mp2n(R) and k ∈ KA such that g = γg∞k. 
Then we define the Eisenstein series EA(g, s) on Sp2n(A) or Mp2n(A) by

EA(g, s) = j(k, i)kE(g∞, s).

Define an element ζ ∈ Sp2n(A) by

ζ∞ = 12n, ζp =
(

0 −1n
1n 0

)
.

We also define an element ζ̃ of Mp2n(A) by

pr(ζ̃) = ζ, h(z, ζ̃) = 1.

Define a function E∗
A(g, s) by

E∗
A(g, s) =

{
EA(gζ, s) (g ∈ Sp2n(A), k ∈ Z)
EA(gζ̃, s) (g ∈ Mp2n(A), k /∈ Z).

We also define the function E∗(z, s) on Hn, similarly. Eisenstein series E∗(z, s) have 
the Fourier expansion of the form

E∗(z, s) =
∑

h∈Symn(Q)≥0

ch(y, s) exp(2π
√
−1 tr(hz)), z = x +

√
−1 y ∈ Hn.

The Fourier coefficients ch(y, s) are already calculated by Shimura. For the details, 
see [11] and [13]. In order to obtain the formula, we first put

ξ(g, h; s, s′) =
∫

Symn(R)

exp(−2π
√
−1 tr(hx)) det(x + ig)−s det(x− ig)−s′dx,

where s, s′ ∈ C, 0 < g ∈ Symn(R) and h ∈ Symn(R). We also put, for a half integral 
matrix τ ∈ Matn(Qp),
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α0
N (τ, s, χ) =

∏
p �N

∑
σ∈Symn(Qp)/Symn(Zp)

expp(−tr(τσ))χ∗(ν0(σ))ν(σ)−s

α1
N (τ, s, χ) =

∏
p �N

∑
σ∈Symn(Qp)/Symn(Zp)

expp(−tr(τσ))χ∗(ν0(σ))ω(σ)ν(σ)−s.

Here, for x ∈ Qp, expp(x) = exp(−2π
√
−1 y) with y ∈ ∪∞

m=1p
−mZ and x − y ∈ Zp, χ∗

is the ideal character associated to χ, ν0(σ) is the denominator ideal, ν(σ) is the norm 
of ν0(σ), and ω is described as follows. For a ∈ Symn(A), we put

γ(a) =
∏
p

γp(a), γp =
∫
Zn

p

expp(tx · ax/2)dx, ω(a) = γ(a)/|γ(a)|,

where p runs finite places, the measure dx is the Haar measure of Zn
p such that 

∫
Zn

p
dx = 1

and we assume that γ(a) �= 0. The following Proposition is due to Shimura.

Proposition 5.2 ([13]). Let q ∈ GLn(R). Suppose that N > 1 and det q > 0. Let y = tqq. 
Then ch(y, s) �= 0 only if h ∈ Symn(b−1N−1Zp) for every finite places p, in which case

ch(y, s) exp(−2π tr(hy))

= C · (bN)−n(n+1)/2 det(y)s−k/2ξ(y, h; s + k/2, s− k/2)αe
N (tqhq, 2s, χ),

where C = 1 and e = 0 if k is an integer and C = exp(π
√
−1n/4) and e = 1 if k is not 

an integer.

Let b0(x) = 1, bj(x) =
∏j−1

m=0(x + (m/2)) if j > 0. For an indeterminate T , we define

det(T1n −X) =
n∑

j=0
(−1)rφr(X)Tn−r, X ∈ Matn(C).

By the explicit formula of confluent hypergeometric functions and Siegel series, we have 
the following Lemma.

Lemma 5.3. Suppose n > 1 and k = (n + 3)/2, χ2 = 1 and N > 1. Then the Fourier 
coefficient ch(y, k/2) is described as follows: If h = 0, we have

c0(y, k/2) = c det y−1 with c ∈ C.

If h > 0, the Fourier coefficient ch(y, k/2) is a constant independent of y. If h ≥ 0 and 
0 < rank(h) < n, we have

ch(y, k/2) = c det y−1
rank(h)∑

bj((n− r)/2)φr−j(4πhy), c ∈ C.

j=0



S. Horinaga / Journal of Number Theory 201 (2019) 206–227 225
Moreover, the Fourier coefficients c0(y, k) and ch(y, k) are non-zero for some h > 0.

Proof. It is sufficient to prove that Fourier coefficients c0(y, s) and ch(y, s) are non-zero 
at s = k/2 for some h > 0 by [13]. By the explicit formula of Siegel series, c0(y, s) is 
described as follows. Define Λ(s) and Λ0(s) by

Λ(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
L(2s, χ)

(n−1)/2∏
i=1

L(4s− 2i, χ2) n ∈ 2Z + 1

n/2∏
i=1

L(4s− 2i + 1, χ2) n ∈ 2Z

Λ0(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
L(2s− n, χ)

(n−1)/2∏
i=1

L(4s− 2n + 2i− 1, χ2) n ∈ 2Z + 1

n/2∏
i=1

L(4s− 2n + 2i− 2, χ2) n ∈ 2Z

where L(s, χ) is the Dirichlet L function. Then, up to bad local factor, we have

c0(y, s) = (Λ(2s)/Λ0(2s)) · det(y)−1.

Then it is easy to see that c0(y, k/2) �= 0. By some computation of L-factors as in [13, 
Proposition 16.10], it is clear that ch(y, k/2) �= 0 for some h > 0. This completes the 
proof. �
5.3. Main theorem

We define a function φ on G or G̃ by

φ(g) = h(g, i)−(n+3) det(Im g(i))−1.

It is what is often called the constant term of E∗ along the Siegel parabolic subgroup.

Lemma 5.4. Let k = (n + 3)/2. The constant term φ generates N(k − 2)∨ as a 
(g, K)-module. In particular, the constant term φ has an infinitesimal character χk.

Proof. It is easy to see that φ belongs to Iα(−1) for α ≡ 2k (mod. 4). By Lemma 5.1, 
φ generates N(k − 2)∨. �

Then we can prove the main theorem.
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Theorem 5.5. With the same assumption as in Lemma 5.3, let M be the (g, K)-module 
generated by E∗(g, k/2). We then have

M ∼= N(k − 2)∨.

Proof. In this proof, we follow the notation as in section 2. By the definition of E∗, the 
Eisenstein series E∗ has the same infinitesimal character as the Siegel Eisenstein series 
E. Note that Eisenstein series E has the same infinitesimal character as its constant term 
φ′. Since the constant terms φ and φ′ are different only in finite places, they have the 
same infinitesimal character. Hence the action of Z on M is equal to the character χk. 
By Corollary 3.6 and Corollary 3.8, the module M is a direct sum of following modules:

L(k), N(k − 2)∨, N(k − 2), P (k).

Let M ′ be the submodule of M generated by the functions X ·E∗ for X ∈ p−. Since 
E∗(g, k/2) is non-holomorphic, the submodule M ′ is non-zero. By (4.1) and Lemma 5.3, 
for a non-constant vector X ∈ U(p−), the Fourier coefficient c(X, h, y) of X · E∗ at 
a positive definite matrices h is 0. Therefore, the submodule M ′ is a non-zero proper 
submodule of M . Let L(ω) = L((ω1, . . . , ωn)) and v be an irreducible submodule of 
M ′ and its highest weight vector, respectively. Let f be the holomorphic modular form 
corresponding to v. Since we have c(X, h, y) = 0 for a non-constant X ∈ U(p−) and a 
positive definite matrix h > 0, the modular form f is a singular form. By [2] and [14], 
we have ωn < n/2. Therefore we have ω = k − 2. Since the module M/M ′ is a non-zero 
module of highest weight k and the module M is generated by only one element of weight 
k, we have the following exact sequence

0 −→ M ′ −→ M −→ L(k) −→ 0. (5.1)

Since the socle of N(k − 2) and P (k) are L(k), there exist integers a and b such that we 
have

M ∼= aL(k) ⊕ bN(k − 2)∨.

Then, by definition of M ′, we have M ′ ∼= bL(k − 2) and hence the multiplicity b is 
non-zero. By the exact sequence (5.1), we have a + b = 1. Hence, we have a = 0 and 
b = 1. This completes the proof. �
Remark 5.6. We define a complex number ch for a semi-positive matrices h by

E∗(z, k/2) =
∑

h≥0,h≯0

ch(det y−1 + fh(Im(z)−1)) exp(2πi tr(hz))

+
∑

ch exp(2πi tr(hz)).

h>0
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Here, the function fh is a polynomial with n(n + 1)/2 variables of degree less than n
(cf. section 4). We can compute ch by Lemma 5.3. Then, by the computation of the 
differential operator D = cn det(∂/∂ri,j) with some normalization factor cn, the singular 
form

DE∗(z) =
∑

h≥0,h≯0

ch exp(2πi tr(hz))

generates L(k − 2). Note that, the singular form DE∗ is a residue of some Eisenstein 
series (see [13, section 17]).
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