期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:176
Sums of averages of gcd-sum functions
Article
Kiuchi, Isao1 
[1] Yamaguchi Univ, Fac Sci, Dept Math Sci, Yoshida 1677-1, Yamaguchi 7538512, Japan
关键词: gcd-sum functions;    Euler totient function;    Dedekind function;    Anderson-Apostol sums;    Dirichlet divisor problem;    Asymptotic results on arithmetical functions;   
DOI  :  10.1016/j.jnt.2016.12.021
来源: Elsevier
PDF
【 摘 要 】

Let gcd (k, j) be the greatest common divisor of the integers k and j. We establish some asymptotic formulas for weighted averages of the gcd-sum functions, that is Sigma(k <= x) 1/k(r+1) Sigma(k)(j=1) j(T) f (gcd(k, j)) with f = id, phi,phi(s), psi and psi(s) for any fixed positive integers r and s, where phi,phi(s), psi and psi(s) and are the Euler, the Jordan, the Dedekind and the generalized Dedekind function, respectively, and also prove the mean square formulas of the gcd-sum function Sigma(k <= x) 1/k(r+1). Sigma(k)(j=1) j(r) phi(gcd(k,j)) and Sigma(k <= x) 1/k(r+1) Sigma(k)(j=1) j(r) psi(gcd(k,j)). (C) 2017 Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2016_12_021.pdf 348KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次