期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:236
Mean values of multivariable multiplicative functions and applications to the average number of cyclic subgroups and multivariable averages associated with the LCM function
Article
Essouabri, Driss1  Zavala, Christoper Salinas1  Toth, Laszlo2 
[1] Univ Jean Monnet St Etienne, Inst Camille Jordan, Fac Sci & Tech, UMR CNRS 5208, 23 Rue Doc Paul Michelon, F-42023 Saint Etienne, France
[2] Univ Pecs, Dept Math, Ifjusag Utja 6, H-7624 Pecs, Hungary
关键词: Mean values of multivariable;    arithmetic functions;    Multiplicative functions;    Zeta functions;    Meromorphic continuation;    Tauberian theorems;   
DOI  :  10.1016/j.jnt.2021.07.027
来源: Elsevier
PDF
【 摘 要 】

We use multiple zeta functions to prove, under suitable assumptions, precise asymptotic formulas for the averages of multivariable multiplicative functions. As applications, we prove some conjectures on the average number of cyclic subgroups of the group Z(m1) x center dot center dot center dot & nbsp;x Z(mn) and multivariable averages associated with the LCM function. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2021_07_027.pdf 977KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次