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Abstract

We use multiple zeta functions to prove, under suitable assumptions, precise asymp-
totic formulas for the averages of multivariable multiplicative functions. As applica-
tions, we prove some conjectures on the average number of cyclic subgroups of the
group Zm1 ×· · ·×Zmn and multivariable averages associated with the LCM function.
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1. Introduction

Our paper is motivated by the following recent results and conjectures. Let n ∈ N and
for m1, . . . ,mn ∈ N let cn(m1, . . . ,mn) denote the number of cyclic subgroups of the
group Zm1 × · · · × Zmn . W. G. Nowak and L. Tóth [5] (2014) proved the asymptotic
formula

∑

1≤m1,m2≤x

c2(m1,m2) = x2

(
12

π4
(ln x)3 + a2(ln x)

2 + a1(lnx) + a0

)
+O(x

1117
701

+ε) as x → ∞,

where a0, a1 and a2 are explicit constants. This error term was improved by L. Tóth
and W. Zhai [9] (2018) into O(x3/2(lnx)13/2). The case n = 3 was investigated by L.
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Tóth and W. Zhai [10] (2020) showing that

∑

1≤m1,m2,m3≤x

c3(m1,m2,m3) = x3

7∑

j=0

cj(ln x)
j +O(x8/3+ε),

where cj (0 ≤ j ≤ 7) are explicit constants. For the proof they used a multidimen-
sional Perron formula and the complex integration method. It is natural to conjecture
that such a result holds for n ≥ 4.

T. Hilberdink, F. Luca, and L. Tóth [4] (2020) investigated the following three aver-
ages associated with the LCM function:

Sn(x) :=
∑

1≤m1,...,mn≤x

1

lcm(m1, . . . ,mn)
, (1)

Un(x) :=
∑

1≤m1,...,mn≤x
gcd(m1,...,mn)=1

1

lcm(m1, . . . ,mn)
, (2)

and
Vn(x) :=

∑

1≤m1,...,mn≤x

m1 . . .mn

lcm(m1, . . . ,mn)
. (3)

By using the convolution method, they obtained in their paper asymptotic formulas
with error terms for S2(x), U2(x) and V2(x). For n ≥ 3, they only obtained the
estimates

(lnx)2
n−1 � Sn(x) � (ln x)2

n−1, (lnx)2
n−2 � Un(x) � (lnx)2

n−2,

xn � Vn(x) � xn (lnx)2
n−2 as x → ∞,

and conjectured that asymptotic formulas with error terms also exist for these three
averages for n ≥ 3.

In order to prove these conjectures, we introduce a reasonably large class of muti-
variable multiplicative functions (see Definition 2). For a function f : Nn → R+ in
this class, we establish in Theorem 1 the existence of the meromorphic continuation
of the associated multiple zeta function

s = (s1, . . . , sn) → M(f ; s) :=
∑

m1≥1,...,mn≥1

f(m1, . . . ,mn)

ms1
1 . . .msn

n

and derive several precise properties of this meromorphic continuation. By combining
our Theorem 1 and La Bretèche’s multivariable Tauberian Theorem (i.e., Theorems
1 and 2 of [1] (2001)) we deduce in our Theorem 2 a precise asymptotic formula for
the multivariable average

N∞(f ; x) :=
∑

m=(m1,...,mn)∈Nn

‖m‖∞=maxi mi≤x

f(m1, . . . ,mn) as x → ∞,
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and derive from it four corollaries.

Our first application, namely Corollary 1, establishes the conjecture concerning the
number of cyclic subgroups of the group Zm1 × · · · × Zmn, in any dimension n. Our
Corollaries 2, 3 and 4 prove the conjectures on the three sums above associated with
the LCM function.

Variants of Theorem 2 with other norm choices can be obtained by combining our
Theorem 1 and the first author’s multivariable tauberian theorem (i.e., Corollary 2 of
[2] (2012)). For example, for the class of Hölder’s norms ‖x‖d := d

√
|x1|d + · · ·+ |xn|d

(d ≥ 1), we obtain in Theorem 3 an asymptotic for the multivariable average

Nd(f ; x) :=
∑

m=(m1,...,mn)∈Nn

‖m‖d=
d
√

md
1+···+md

n≤x

f(m1, . . . ,mn) as x → ∞.

As an application of Theorem 3, we derive in Corollaries 5 and 6 the analogues of
Corollaries 1 and 4 for the Hölder’s norms ‖ ‖d.

1.1. Notations

1. N = {1, 2, . . . }, N0 = N ∪ {0}; R+ = [0,∞).

2. The expression: f(λ,y,x)�yg(x) uniformly in x ∈ X and λ ∈ Λ means there
exists A = A(y) > 0, such that, ∀x ∈ X and ∀λ ∈ Λ |f(λ,y,x)| ≤ Ag(x);

3. Let d ∈ [1,+∞[, for any x = (x1, ..., xn) ∈ R
n, we set ‖x‖d = d

√
|x1|d + ...+ |xn|d,

and ‖x‖∞ = maxi=1,...,n |xi|. We denote the canonical basis of Rn by (e1, . . . , en)
(i.e. ei,j = 1 if i = j and ei,j = 0 if i �= j). The standard inner product on R

n

is denoted by 〈., .〉. We set also 0 = (0, . . . , 0) and 1 = (1, . . . , 1);

4. We denote a vector in C
n by s = (s1, . . . , sn), and write s = σ + iτ , where

σ = (σ1, . . . , σn) and τ = (τ1, . . . , τn) are the real resp. imaginary components
of s (i.e. σi = �(si) and τi = �(si) for all i). We also write 〈x, s〉 for

∑
i xisi if

x ∈ R
n, s ∈ C

n;

5. A function f : Nn → C is said to be multiplicative if for all m = (m1, . . . ,mn) ∈
N

n andm′ = (m′
1, . . . ,m

′
n) ∈ N

n satisfying gcd (lcm (mi) , lcm (m′
i)) = 1 we have

f (m1m
′
1, . . . ,mnm

′
n) = f(m) · f(m′);

6. Let F be a meromorphic function on a domain D of Cn and let S be the support
of its polar divisor. F is said to be of moderate growth if ∃a, b > 0 such that
∀δ > 0, F (s) �σ,δ 1 + ‖τ‖a‖σ‖1+b

1 uniformly in s = σ + iτ ∈ D verifying
d(s,S) ≥ δ;
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2. A class of multivariable multiplicative functions and statement of the
main results

2.1. A class of multivariable multiplicative functions

To simplify the exposition, we introduce first the following three definitions.

Definition 1. A quadruple (g, κ, c, δ) is said to be a data if

1. g : Nn
0 → N0 is a function of subexponential growth; that is g verifies for any

ε > 0 g(ν) �ε e
ε‖ν‖1 uniformly in ν ∈ N

n
0 ;

2. κ : Nn
0 → [1,∞) ∪ {0} is a function verifying κ(0) = 0 and infν∈Nn

0 \{0}
κ(ν)
‖ν‖1 > 0

3. c = (c1, . . . , cn) ∈ [0,∞)n and δ ∈ (0,∞).

We now introduce the class of multivariable multiplicative functions on which we will
focus in this paper.

Definition 2. Let (g, κ, c, δ) be a data as in definition 1.
A multivariable multiplicative function f : Nn → R is said to be in the class C(g, κ, c, δ)
if for any ε > 0,

f(pν1 , . . . , pνn)− g(ν) p〈c,ν〉−κ(ν) �ε e
ε‖ν‖1 p〈c,ν〉−κ(ν)−δ, (4)

uniformly in ν ∈ N
n
0 and p prime number.

We will need also the following integral definition.

Definition 3. Let I be a finite subset of Nn
0 \ {0}, u = (u(ν))ν∈I be a finite sequence

of positive integers and c = (c1, . . . , cn) ∈ [0,∞)n. We denote by ν1, . . . ,νr the
elements of I where r = #I, and define the finite sequence qk (0 ≤ k ≤ r) by

q0 = 0 and qk =
k∑

j=1

u(νj) ∀k = 1, . . . , r.

We define then for x > 0 the integral

In(I,u, c; x) :=

∫

A(I,u;x)

dy1 . . . dyqr∏r
k=1

∏qk
�=qk−1+1 y

1−〈νk,c〉
�

,

where A(I,u; x) :=

⎧
⎨

⎩y ∈ [1,∞)qr ;
r∏

k=1

qk∏

�=qk−1+1

y
〈νk,ej〉
� ≤ x ∀j = 1, . . . , n

⎫
⎬

⎭.
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2.2. Statement of the main results

Let f : N
n → R be a multivariable multiplicative function. We assume that f

belongs to the class C(g, κ, c, δ) associated to the data (g, κ, c, δ) (see definitions 1
and 2 above).
We assume also that the finite set

I = I(κ, g) := {ν ∈ N
n
0 | κ(ν) = 1 and g(ν) �= 0} is nonempty. (5)

The following theorem is the main analytic ingredient of this paper:

Theorem 1. 1. the multiple zeta function

s = (s1, . . . , sn) → M(f ; s) :=
∑

m1≥1,...,mn≥1

f(m1, . . . ,mn)

ms1
1 . . .msn

n

converges absolutely in the domain {s ∈ C
n | �(si) > ci ∀i = 1, . . . , n};

2. there exists ε0 > 0 such that the function

s = (s1, . . . , sn) → H(f, c; s) :=

(
∏

ν∈I

〈ν, s〉g(ν)
)

M(f ; c+ s)

has holomorphic continuation to the domain {s ∈ C
n | �(si) > −ε0 ∀i =

1, . . . , n} and verifies in it the following estimate: for all ε > 0,

H(f, c; s) �ε

∏

ν∈I

(|〈ν, s〉|+ 1)g(ν)(1−
1
2
min(0,
(〈ν,s〉)))+ε ;

3. H(f, c;0) is given by the following convergent Euler product:

H(f, c;0) =
∏

p

(
1− 1

p

)∑
ν∈I g(ν)

⎛

⎝
∑

ν∈Nn
0

f(pν1 , . . . , pνn)

p〈ν,c〉

⎞

⎠ . (6)

Combining our Theorem 1 and La Bretèche’s multivariable Tauberian Theorem (i.e
Theorems 1 and 2 of [1] (2001)) yields to the following multivariable mean value
theorem:

Theorem 2. Let f : Nn → R+ be a nonnegative multivariable multiplicative function
satisfying assumptions of Theorem 1. Set J := {ei | ci = 0} where (e1, . . . , en) is the
canonical basis of Rn. Set also ρ :=

(∑
ν∈I g(ν)

)
+#J −Rank (I ∪ J).

Then, there exist a polynomial Q∞ of degree at most ρ and a positive constant μ∞ > 0
such that

N∞(f ; x) :=
∑

m=(m1,...,mn)∈Nn

‖m‖∞=maxi mi≤x

f(m1, . . . ,mn) = x‖c‖1Q∞(ln x)+O
(
x‖c‖1−μ∞

)
as x → ∞.

Furthermore, if we assume in addition that the two following assumptions hold:
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1. Rank (I ∪ J) = n;

2. 1 = (1, . . . , 1) is in the interior of the cone generated by I ∪ J ; that is 1 ∈
con∗ (I ∪ J) := {

∑
ν∈I∪J λνν | λν ∈ (0,∞) ∀ν ∈ I ∪ J},

Then, the degree of the polynomial Q∞ is equal to ρ =
(∑

ν∈I g(ν)
)
+#J −n and the

main term of N∞(f ; x) is given by

N∞(f ; x) = Cn(f)Kn(f, ‖‖∞) x‖c‖1(lnx)ρ +O
(
(ln x)ρ−1

)
as x → ∞,

where Cn(f) := H(f, c;0) > 0 is defined by the Euler product (6) and

Kn(f, ‖‖∞) := lim
x→∞

In(I,u, c; x) x
−‖c‖1(lnx)−ρ > 0, where

In(I,u, c; x) is the integral (see definition 3) associated to the finite set I, the finite
sequence u = (g(ν))ν∈I and to the vector c.

Remark 1. The existence of the limit Kn(f, ‖‖∞) follows from the proof of Theorem2.
If {e1, . . . , en} ⊂ I ∪ J , then the two assumptions Rank (I ∪ J) = n and 1 ∈
con∗ (I ∪ J) clearly hold.

Combining our Theorem 1 and the first author’s multivariable tauberian theorem (i.e
corollary 2 of [2] (2012)) yields to the following multivariable mean value theorem for
Hölder’s norms ‖x‖d := d

√
|x1|d + · · ·+ |xn|d (d ≥ 1):

Theorem 3. Let f : Nn → R+ be a nonnegative multivariable multiplicative function
satisfying assumptions of Theorem 1.
Assume that c = (c1, . . . , cn) ∈ (0,∞)n. Set

1. ρ :=
(∑

ν∈I g(ν)
)
−Rank(I);

2. Ic := {〈c,ν〉−1ν | ν ∈ I} and u := (u(β))β∈Ic where u(β) =
∑

ν∈I,〈c,ν〉−1ν=β

g(ν).

Then, there exist a polynomial Q of degree at most ρ and a positive constant μ > 0
such that

Nd(f ; x) :=
∑

m=(m1,...,mn)∈Nn

‖m‖d=
d
√

md
1+···+md

n≤x

f(m1, . . . ,mn) = x‖c‖1Q(ln x)+O
(
x‖c‖1−μ

)
as x → ∞.

Furthermore, if we assume in addition that Rank(I) = n and 1 ∈ con∗ (I), then, the
degree of the polynomial Q is equal to ρ =

(∑
ν∈I g(ν)

)
− n and the main term of

Nd(f ; x) is given by

Nd(f ; x) = Cn(f)Kn(f, ‖‖d) x‖c‖1(lnx)ρ +O
(
(lnx)ρ−1

)
as x → ∞,

6



where Cn(f) := H(f, c;0) > 0 is defined by the Euler product (6) above and

Kn(f, ‖‖d) :=
(
∏

ν∈I

〈ν, c〉−g(ν)

)
dρ+1 A0(Tc, Pd)

‖c‖1 ρ!
> 0.

where A0(Tc, Pd) > 0 is the mixed volume constant (see §2.3.3 of [2] (2012)) associated
to the pair Tc := (Ic,u) and the polynomial Pd = Xd

1 + · · ·+Xd
n.

2.3. Applications

We will now give the applications that motivated our general results of section §2.2.

2.3.1. On the average number of cyclic subgroups of the group Zm1 × · · · × Zmn

Let n ∈ N. For m1, . . . ,mn ∈ N denote by cn(m1, . . . ,mn) the number of cyclic
subgroups of the group Zm1 × · · · × Zmn . Set

Gn(x) :=
∑

1≤m1,...,mn≤x

cn(m1, . . . ,mn).

As we mentioned in the introduction, precise asymptotic for G2(x) was obtained by
W. G. Nowak and L. Tóth in [5] (2014) and improved by L. Tóth and W. Zhai in [9]
(2018). The case n = 3 was also investigated by L. Tóth and W. Zhai in [10] (2020).
It is natural to conjecture that such a result holds for n ≥ 4. The following result
establish this conjecture in any dimension n.

Corollary 1. Let n ∈ N. There exists a polynomial Q1 of degree 2n − 1 and μ1 > 0
such that

Gn(x) :=
∑

1≤m1,...,mn≤x

cn(m1, . . . ,mn) = xn Q1(lnx) +O(xn−μ1) as x → ∞.

In particular, we have

Gn(x) = Cn(cn)Kn(cn, ‖‖∞) xn(lnx)2
n−1 +O

(
xn(ln x)2

n−2
)

as x → ∞,

where

Cn(cn) :=
∏

p

(
1− 1

p

)2n+n−1
⎛

⎝
∑

ν∈Nn
0

cn(p
ν1 , . . . , pνn)

p‖ν‖1

⎞

⎠ > 0 (7)

and
Kn(cn, ‖‖∞) := lim

x→∞
In(I,u; x) x

−n(lnx)−2n+1 > 0, where

In(I,u, c; x) is the integral (see definition 3) associated to I = {0, 1}n \ {0}, to the
sequence u = (u(ν))ν∈I defined by u(ei) = 2 ∀i = 1, . . . , n and u(ν) = 1 ∀ν ∈
I \ {e1, . . . , en} and to the vector c = 1.

7



Remark 2. We will compute more explicitly in §7 below the constants Cn(cn) and
Kn(cn, ‖‖∞) for n = 2 and n = 3. In particular, we will prove in §7.1 and §7.3 that
C2(c2) =

36
π4 and K2(c2, ‖‖∞) = 1

3
. Thus, our mains term in the asymptotic of G2(x)

agree with the main term obtained by the convolution method in [5] (2014) by W. G.
Nowak and L. Tóth.

2.3.2. Some multivariable averages associated to the LCM function

As we mentioned in the introduction, T. Hilberdink, F. Luca, and L. Tóth introduced
in [4] (2020) the three averages (1), (2) and (3) associated to the LCM function and
obtained in this paper asymptotic formulas for S2(x), U2(x) and V2(x). For n ≥ 3,
they only obtained the following estimates

(lnx)2
n−1 � Sn(x) � (ln x)2

n−1, (lnx)2
n−2 � Un(x) � (lnx)2

n−2,

xn � Vn(x) � xn (lnx)2
n−2,

and conjectured that asymptotic formulas also exist for these three averages for n ≥ 3.
The following three corollaries prove these conjectures.

Corollary 2. Let n ∈ N. There exists a polynomial Q2 of degree 2n − 1 and μ2 > 0
such that

Sn(x) :=
∑

1≤m1,...,mn≤x

1

lcm(m1, . . . ,mn)
= Q2(lnx) +O(x−μ2) as x → ∞.

In particular, we have

Sn(x) = Cn(sn)Kn(sn, ‖‖∞) (ln x)2
n−1 +O

(
(lnx)2

n−2
)

as x → ∞,

where

Cn(sn) :=
∏

p

(
1− 1

p

)2n−1
( ∞∑

k=0

(k + 1)n − kn

pk

)
> 0, (8)

and
Kn(sn, ‖‖∞) := lim

x→∞
In(I,u, c; x) (ln x)

−2n+1 > 0, where

In(I,u, c; x) is the integral (see definition 3) associated to I = {0, 1}n \ {0}, to the
sequence u = (u(ν))ν∈I defined by u(ν) = 1 ∀ν ∈ I and to the vector c = 0.

Corollary 3. Let n ∈ N \ {1}. There exists a polynomial Q3 of degree 2n − 2 and
μ3 > 0 such that

Un(x) :=
∑

1≤m1,...,mn≤x
gcd(m1,...,mn)=1

1

lcm(m1, . . . ,mn)
= Q3(lnx) +O(x−μ3) as x → ∞.

8



In particular, we have

Un(x) = Cn(un)Kn(un, ‖‖∞) (ln x)2
n−2 +O

(
(lnx)2

n−3
)

as x → ∞,

where

Cn(un) :=
∏

p

(
1− 1

p

)2n−1
( ∞∑

k=0

(k + 1)n − kn

pk

)
> 0, (9)

and
Kn(un, ‖‖∞) := lim

x→∞
In(I,u, c; x) (ln x)

−2n+2 > 0, where

In(I,u, c; x) is the integral (see definition 3) associated to I = {0, 1}n \ {0,1}, to the
sequence u = (u(ν))ν∈I defined by u(ν) = 1 ∀ν ∈ I and to the vector c = 0.

Corollary 4. Let n ∈ N. There exists a polynomial Q4 of degree 2n − n − 1 and
μ4 > 0 such that

Vn(x) :=
∑

1≤m1,...,mn≤x

m1 . . .mn

lcm(m1, . . . ,mn)
= xn Q4(lnx) +O(xn−μ4) as x → ∞.

In particular, we have

Vn(x) = Cn(vn)Kn(vn, ‖‖∞) xn (lnx)2
n−n−1 +O

(
xn (ln x)2

n−n−2
)

as x → ∞,

where

Cn(vn) :=
∏

p

(
1− 1

p

)2n−1
( ∞∑

k=0

(k + 1)n − kn

pk

)
> 0, (10)

and
Kn(vn, ‖‖∞) := lim

x→∞
In(I,u, c; x) x

−n(lnx)−2n+n+1 > 0, where

In(I,u, c; x) is the integral (see definition 3) associated to I = {0, 1}n \ {0}, to the
sequence u = (u(ν))ν∈I defined by u(ν) = 1 ∀ν ∈ I and to the vector c = 1.

Remark 3. The constants Cn(sn), Cn(un) and Cn(vn) are equal. We will compute
more explicitly in sections §7.2, §7.4, §7.5 and §7.6 below the constants Cn(.) and
Kn(., ‖‖∞) for n = 2 and n = 3. More precisely, we will prove that

1. C2(s2) = C2(u2) = C2(v2) =
6
π2 and

C3(s3) = C3(u3) = C3(v3) =
∏

p

(
1− 9

p2
+ 16

p3
− 9

p4
+ 1

p6

)
;

2. K2(s2, ‖‖∞) = 1
3
, K2(u2, ‖‖∞) = 1 and K2(v2, ‖‖∞) = 1;

3. K3(s3, ‖‖∞) = 11
3366

, K3(u3, ‖‖∞) = 11
480

and K3(v3, ‖‖∞) = 1
16
.

In particular, our mains terms in the asymptotic of S2(x), U2(x) and V2(x) agree with
those obtained by the convolution method in [4] (2020) by T. Hilberdink, F. Luca, and
L. Tóth.
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2.3.3. Multivariable averages with other norms

The following two results give analogues of corollaries 1 and 4 for some other choices
of norms.

Corollary 5. Let n ∈ N and d ≥ 1. There exists a polynomial Q5 of degree 2n − 1
and μ5 > 0 such that

Gn,d(x) :=
∑

m=(m1,...,mn)∈Nn

‖m‖d=
d
√

md
1+···+md

n≤x

cn(m1, . . . ,mn) = xn Q5(lnx)+O(xn−μ5) as x → ∞.

Moreover, if we set Ĩ :=
{
‖ν‖−1

1 ν; ν ∈ {0, 1}n \ {0}
}

and u = (u(β))β∈Ĩ where
u(β) = 2 if β ∈ {e1, . . . , en} and u(β) = 1 otherwise, then

Gn,d(x) = Cn(cn) Kn(cn, ‖‖d) xn(ln x)2
n−1 +O

(
xn(ln x)2

n−2
)

as x → ∞,

where Cn(cn) > 0 is given by (7) and

Kn(cn, ‖‖d) =
(

n∏

k=2

k−(nk)

)
d2

n
A0(T , Pd)

n (2n − 1)!
> 0,

where A0(T , Pd) is the mixed volume constant (see §2.3.3 of [2] (2012)) associated to
the pair T = (Ĩ ,u) and the polynomial Pd = Xd

1 + · · ·+Xd
n.

Corollary 6. Let n ∈ N and d ≥ 1. There exists a polynomial Q6 of degree 2n−n−1
and μ6 > 0 such that

Vn,d(x) :=
∑

m=(m1,...,mn)∈Nn

‖m‖d=
d
√

md
1+···+md

n≤x

m1 . . .mn

lcm(m1, . . . ,mn)
= xn Q6(lnx)+O(xn−μ6) as x → ∞.

Moreover, if we set Ĩ :=
{
‖ν‖−1

1 ν; ν ∈ {0, 1}n \ {0}
}

and u = (u(β))β∈Ĩ where

u(β) = 1 ∀β ∈ Ĩ, then

Vn,d(x) = Cn(vn) Kn(vn, ‖‖d) xn(ln x)2
n−n−1 +O

(
xn(lnx)2

n−n−2
)

as x → ∞,

where Cn(vn) > 0 is given by (10) and

Kn(vn, ‖‖d) =
(

n∏

k=2

k−(nk)

)
d2

n−n A0(T , Pd)

n (2n − n− 1)!
> 0,

where A0(T , Pd) is the mixed volume constant (see §2.3.3 of [2] (2012)) associated to
the pair T = (Ĩ ,u) and the polynomial Pd = Xd

1 + · · ·+Xd
n.
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Remark 4. The constants Cn(.), are independent on the choice of the norm. The
constants Kn(.) depend on the choice of the norm. We will compute more explicitly
in §7.7 below the constants Kn(cn, ‖‖d) and Kn(vn, ‖‖d) for n = 2 and n = 3. More
precisely, we will prove that

1. K2(c2, ‖‖d) =
1

6d

Γ (1/d)2

Γ (2/d)
and K2(v2, ‖‖d) =

1

2d

Γ(1/d)2

Γ(2/d)
;

2. K3(c3, ‖‖d) =
31 Γ (1/d)3

30240 d2 Γ (3/d)
and K3(v3, ‖‖d) =

Γ (1/d)3

2 d2 Γ (3/d)
.

3. Proof of Theorem 1

Let f : Nn → R be a multiplicative function in the class C(g, κ, c, δ).
Define for ν ∈ N

n
0 and p prime V (p,ν) by the formula

f(pν1 , . . . , pνn) = (g(ν) + V (p,ν)) p〈c,ν〉−κ(ν) (11)

Since (g, κ, c, δ) is a data, point 1 of definition 1 and assumption (4) can then be
written in the following more convenient equivalent form:

∀ε > 0, g(ν) �ε e
ε‖ν‖1 and V (p,ν) �ε e

ε‖ν‖1 p−δ, (12)

uniformly in ν ∈ N
n
0 and in p prime number.

Moreover, point 2 of definition 1 implies that there exists β > 0 such that

κ(ν) ≥ max (1, β‖ν‖1) ∀ν ∈ N
n
0 \ {0}. (13)

3.1. Proof of point 1 of Theorem 1

Let s = (s1, . . . , sn) ∈ C
n be such that σi = �(si) > ci ∀i = 1, . . . , n.

Set σ = (σ1, . . . , σn) and η = 1
2
mini=1,...,n(σi − ci) > 0.

So, we have σi ≥ ci + 2η ∀i and 〈σ,ν〉 ≥ 〈c,ν〉 + 2η‖ν‖1 ∀ν ∈ N
n
0 . Choose ε > 0

small enough such that eε < 2η. It follows then from (11) and (12) that we have for
any prime number p,

∑

p

∑

‖ν‖1≥1

∣∣∣∣
f(pν1 , . . . , pνn)

p〈s,ν〉

∣∣∣∣ =
∑

p

∑

‖ν‖1≥1

|f(pν1 , . . . , pνn)|
p〈σ,ν〉 �ε

∑

p

∑

‖ν‖1≥1

eε‖ν‖1p〈c,ν〉−κ(ν)

p〈c,ν〉+2η‖ν‖1

�ε

∑

p

∑

‖ν‖1≥1

eε‖ν‖1

pκ(ν)+2η‖ν‖1
�ε

∑

p

1

p1+η

∑

‖ν‖1≥1

eε‖ν‖1

pη‖ν‖1

�ε

∑

p

1

p1+η

∑

‖ν‖1≥1

(
eε

2η

)‖ν‖1
�ε

∑

p

1

p1+η
< ∞.
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The multiplicativity of f implies then that s → M(f ; s) converges absolutely and
that

M(f ; s) =
∑

m∈Nn

f(m1, . . . ,mn)

ms1 . . .msn
n

=
∏

p

⎛

⎝
∑

ν∈Nn
0

f(pν1 , . . . , pνn)

p〈s,ν〉

⎞

⎠ . (14)

This ends the proof of point 1 of Theorem 1.

3.2. Two useful lemmas

Recall that I = I(κ, g) := {ν ∈ N
n
0 | κ(ν) = 1 and g(ν) �= 0} is an nonempty set.

For all t ∈ R, set Ut := {s ∈ C
n | σi = �(si) > t ∀i = 1, . . . , n}.

We need the following two lemmas:

Lemma 1. There exists ε1, η1 > 0 such that for any prime number p, the function

s �→ Rp(s) :=

⎛

⎝
∑

‖ν‖1≥1

f(pν1 , . . . , pνn)

p〈c+s,ν〉

⎞

⎠−
(
∑

ν∈I

g(ν)

p1+〈ν,s〉

)

is holomorphic in the domain U−ε1 and verifies in it the estimate

Rp(s) � p−1−η1 uniformly in p.

Lemma 2. Set ε2 = infν∈I
1

4‖ν‖1 and η2 = 1
2
. Then, for any prime number p, the

function

s �→ Lp(s) :=

(
∏

ν∈I

(
1− 1

p1+〈ν,s〉

)g(ν)
)

− 1 +

(
∑

ν∈I

g(ν)

p1+〈ν,s〉

)

is holomorphic in the domain U−ε2 and verifies in it the estimate

Lp(s) � p−1−η2 uniformly in p.

3.2.1. Proof of Lemma 1

Fix β > 0 such that (13) holds. Fix also a positive integer N verifying N ≥

max

(
4β−1,max

ν∈I
‖ν‖1

)
.

Identity (11) implies that for p prime number and s ∈ U0 = {s ∈ C
n | σi > 0 ∀i}, we

have
Rp(s) = R1

p(s) +R2
p(s), where (15)

R1
p(s) =

∑

1≤‖ν‖1≤N

V (p,ν)

pκ(ν)+〈ν,s〉+
∑

ν �∈I
1≤‖ν‖1≤N

g(ν)

pκ(ν)+〈ν,s〉 and R2
p(s) =

∑

‖ν‖1>N

g(ν) + V (p,ν)

pκ(ν)+〈ν,s〉 .

12



To prove Lemma 1 it suffices to verify that both s �→ R1
p(s) and s �→ R2

p(s) satisfy its
conclusions.

CLAIM 1: s �→ R1
p(s) satisfies the conclusions of Lemma 1.

Proof of CLAIM 1: It’s clear that s �→ R1
p(s) is holomorphic in the whole space

C
n.

Let ε > 0. It follows from (12) and (13) that for p prime number and s ∈ U−ε = {s ∈
C

n | σi > −ε ∀i}, we have

|R1
p(s)| ≤

∑

1≤‖ν‖1≤N

|V (p,ν)|
p1+〈ν,σ〉 +

∑

ν �∈I
1≤‖ν‖1≤N

g(ν)

pκ(ν)+〈ν,σ〉 �
∑

ν∈I

p−δ

p1−ε‖ν‖1
+

∑

ν �∈I, g(ν) �=0
1≤‖ν‖1≤N

1

pκ(ν)−ε‖ν‖1

(16)
Since κ(ν) > 1 if ν �∈ I ∪{0} and g(ν) �= 0, it is clear that we can choose ε > 0 small
enough such that

μ1 := min
ν∈I

(δ−ε‖ν‖1) > 0 and μ2 := min{κ(ν)−ε‖ν‖1−1 | 1 ≤ ‖ν‖1 ≤ N, ν �∈ I and g(ν) �= 0} > 0.

Set μ = min(μ1, μ2) > 0. It follows then from (16) that we have R1
p(s) � p−1−μ

uniformly in p prime number and in s ∈ U−ε. This ends the proof of CLAIM 1.

CLAIM 2: s �→ R2
p(s) satisfies the conclusions of Lemma 1.

Proof of CLAIM 2: Fix ε > 0 such that eε < 2β/4. Assumptions (12) and (13)
imply that we have uniformly in p prime number and in s ∈ U−β/2,

∑

‖ν‖1>N

∣∣∣∣
g(ν) + V (p,ν)

pκ(ν)+〈ν,s〉

∣∣∣∣ �ε

∑

‖ν‖1>N

eε‖ν‖1

pβ‖ν‖1+〈ν,σ〉 ≤
∑

‖ν‖1>N

eε‖ν‖1

p
β
2
‖ν‖1

�ε
1

p
β
4
N

∑

‖ν‖1>N

eε‖ν‖1

2
β
4
‖ν‖1

�ε
1

p
β
4
N

∑

‖ν‖1>N

(
eε

2
β
4

)‖ν‖1
�ε

1

p
β
4
N

≤ 1

p2
.

We deduce that s �→ R2
p(s) is holomorphic in U−β/2 and verifies the estimates R2

p(s) �
p−2 uniformly in p prime number and s ∈ U−β/2. This ends the proof of CLAIM 2
and also ends the proof of Lemma 1.

3.3. Proof of Lemma 2

It is clear that s �→ Lp(s) is holomorphic in C
n for any p.

Set now ε2 = infν∈I
1

4‖ν‖1 . It follows that for s ∈ U−ε2 and ν ∈ I, 1 + 〈ν,σ〉 ≥
1− ε2‖ν‖1 ≥ 3/4.
Newton Binomial theorem implies then that we have uniformly in s ∈ U−ε2 and in p

13



prime number,

|Lp(s)| =

∣∣∣∣∣

(
∏

ν∈I

(
1− 1

p1+〈ν,s〉

)g(ν)
)

− 1 +

(
∑

ν∈I

g(ν)

p1+〈ν,s〉

)∣∣∣∣∣

=

∣∣∣∣∣∣∣

∑

0≤kν≤g(ν) ∀ν∈I,∑
ν∈I kν≥2

∏
ν∈I(−1)kν

(
g(ν)
kν

)

p
∑

ν∈I kν(1+〈ν,s〉)

∣∣∣∣∣∣∣
�

∑

0≤kν≤g(ν) ∀ν∈I,∑
ν∈I kν≥2

1

p
∑

ν∈I kν(1+〈ν,σ〉)

�
∑

0≤kν≤g(ν) ∀ν∈I,∑
ν∈I kν≥2

1

p
3
4

∑
ν∈I kν

� 1

p3/2
.

This ends the proof of Lemma 2.

3.3.1. Proof of parts 2 and 3 of Theorem 1

Define the function s = (s1, . . . , sn) �→ E(f ; s) by

E(f ; s) :=
(
∏

ν∈I

ζ (1 + 〈ν, s〉)−g(ν)

)
M(f ; c+ s). (17)

Part 1 of Theorem 1 implies then that s �→ E(f ; s) converges absolutely in the domain
U0 = {s ∈ C

n | σi > 0 ∀i}. Moreover, The multiplicativity of f imply that for all
s ∈ U0:

E(f ; s) =
∏

p

Ep(f ; s), where (18)

Ep(f ; s) :=
∏

ν∈I

(
1− 1

p1+〈ν,s〉

)g(ν)
⎛

⎝
∑

ν∈Nn
0

f(pν1 , . . . , pνn)

p〈ν,c+s〉

⎞

⎠ .

We will now prove the following needed lemma:

Lemma 3. There exists ε0 > 0 such that the Euler product s �→ E(f ; s) =
∏

p Ep(f ; s)
converges absolutely and defines a bounded holomorphic function in the domain
U−ε0 = {s ∈ C

n | σi > −ε0 ∀i = 1, . . . , n}.

Proof of Lemma 3:
We will use in the sequel of this proof notation of Lemmas 1 and 2. Lemmas 1 and
2 imply that for any prime p and any s ∈ U0,

Ep(f ; s) =

(
1−

(
∑

ν∈I

g(ν)

p1+〈ν,s〉

)
+ Lp(s)

)(
1 +

(
∑

ν∈I

g(ν)

p1+〈ν,s〉

)
+Rp(s)

)

= 1− Ap(s)
2 + Bp(s) + Cp(s), where (19)
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Ap(s) :=
∑

ν∈I

g(ν)

p1+〈ν,s〉 , Bp(s) := (1− Ap(s))Rp(s) and Cp(s) := Lp(s) (1 + Ap(s) +Rp(s)) .

Let ε1, ε2, η1, η2 > 0 the positive constants defined in Lemmas 1 and 2.
Set ε0 = min(ε1, ε2) > 0 and η0 = min(η1, η2) = min(η1, 1/2) > 0. Lemmas 1 and 2
imply that the three function Ap, Bp and Cp are holomorphic in U−ε0 and that we
have uniformly in p prime number and s ∈ U−ε0 the following estimates:

1. Ap(s) �
∑

ν∈I

1

p1+〈ν,σ〉 ≤
∑

ν∈I

1

p1−ε0‖ν‖1
� 1

p3/4
;

2. Ap(s)
2 � 1

p3/2
� 1

p1+η0
;

3. Bp(s) �
(
1 +

1

p3/4

)
1

p1+η1
� 1

p1+η0
;

4. Cp(s) �
1

p1+η2

(
1 +

1

p3/4
+

1

p1+η1

)
� 1

p1+η0
.

It follows that for any prime number p, the function s �→ Ep(f ; s)−1 is holomorphic in

U−ε0 and verifies Ep(f ; s)−1 � 1

p1+η0
uniformly in s ∈ U−ε0 and in the prime number p.

We deduce that the Euler product s �→ E(f ; s) =
∏

p Ep(f ; s) converges absolutely
and defines a bounded holomorphic function in U−ε0 . This ends the proof of Lemma
3.

We are now ready to prove points 2 and 3 of Theorem 1. Combining part 1 of Theorem
1, (17) and (18) implies that for s ∈ U0,

H(f, c; s) :=

(
∏

ν∈I

〈ν, s〉g(ν)
)

M(f ; c+ s) =

(
∏

ν∈I

(〈ν, s〉ζ (1 + 〈ν, s〉))g(ν)
)

E(f ; s).

(20)
Part 2 of Theorem 1 follows then from Lemma 3 and the following two classical
properties of Riemann zeta function: s �→ sζ(1 + s) is holomorphic in C and verifies

in the half-plane {�(s) > −1} the estimate s ζ(1 + s) �ε (1 + |s|)1− 1
2
min(0,
(s))+ε,

∀ε > 0.
Moreover, since sζ(1 + s)|s=0 = 1, we deduce from (20) and (18) that

H(f, c;0) = E(f ;0) =
∏

p

(
1− 1

p

)∑
ν∈I g(ν)

⎛

⎝
∑

ν∈Nn
0

f(pν1 , . . . , pνn)

p〈ν,c〉

⎞

⎠ .

This ends the proof of point 3 and also the proof of Theorem 1.
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4. Proofs of Theorems 2 and 3

4.1. Proof of Theorem 2

We will now explain how the combination of our Theorem 1 and La Bretèche’s mul-
tivariable Tauberian Theorem (i.e Theorems 1 and 2 of [1] (2001)) yields to our
Theorem 2. Our notations are different from La Bretèche’s notations. To simplify
the exposition, we will first recall La Bretèche’s Tauberian Theorem 1 and the part
we use of his Tauberian Theorem 2 by using our notations:
Theorem A: (Theorem 1 of [1] (2001)):
Let f : Nn → R+ be a nonnegative function and F the associated Dirichlet’s series
defined by

F (s) = F (s1, . . . , sn) =
∑

m1,...,mn≥1

f(m1, . . . ,mn)

ms1
1 . . .msn

n

.

Denote by LR+
n (C) the set of C−linear forms from C

n to C that are nonnegative on
(R+)

n.
We assume that there exists c = (c1, . . . , cn) ∈ (R+)

n such that:

1. F (s) converges absolutely for s ∈ C
n such that �(si) > ci ∀i = 1, . . . , n;

2. There exist a finite family L =
(

(i)

)
1≤i≤q

of nonzero elements of LR+
n (C), a

finite family
(
h(i)

)
1≤i≤q′

of elements of LR+
n (C) and δ1, δ2, δ3 > 0 such that the

function H defined by

H(s) = F (c+ s)

q∏

i=1


(i)(s)

has holomorphic continuation to the domain

D(δ1, δ3) := {s ∈ C
n | �

(

(i)(s)

)
> −δ1 ∀i = 1, . . . , q and �

(
h(i)(s)

)
> −δ3 ∀i = 1, . . . , q′}

and verifies the estimate: for ε, ε′ > 0 we have uniformly in s ∈ D(δ1−ε′, δ3−ε′)

H(s) �
q∏

i=1

(
|�

(

(i)(s)

)
|+ 1)

)1−δ2 min(0,
(�(i)(s)))
(1 + (|�(s1)|+ · · ·+ |�(sn)|)ε) .

Set J = J(c) = {j ∈ {1, . . . , n} | cj = 0}. Denote by w = #J the cardinality of the
set J and by j1 < · · · < jw its elements in increasing order. Define the w linear forms

(q+i) (1 ≤ i ≤ w) by 
q+i(s) = e∗ji(s) = sji.
Then, for any β = (β1, . . . , βn) ∈ (0,∞)n, there exist a polynomial Qβ ∈ R[X] of
degree at most q + w −Rank

{

(1), . . . , 
(q+w)

}
and θ > 0 such that

∑

1≤m1≤xβ1

· · ·
∑

1≤mn≤xβn

f(m1, . . . ,mn) = x〈c,β〉Qβ(log x) +O(x〈c,β〉−θ) as x → ∞.
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Theorem B: (parts (ii) and (iv) from Theorem 2 of [1] (2001)):
Let f : Nn → R+ be a function satisfying assumptions of Theorem A.
Let β = (β1, . . . , βn) ∈ (0,∞)n. Set B =

∑n
i=1 βie

∗
i ∈ LR+

n (C).

• (ii) If the Dirichlet’s series F satisfies the additional two assumptions:
(C1) There exists a function G such H(s) = G

(

(1)(s), . . . , 
(q+w)(s)

)
.

(C2) B ∈ V ect
(
{
(k) | k = 1, . . . , q + w}

)
and there is no subfamily L′ of L0 :=(


(k)
)
1≤k≤q+w

such that L′ �= L0, B ∈ V ect(L′) and #L′ − Rank(L′) = #L0 −
Rank(L0).

Then, the polynomial Qβ satisfies the relation

Qβ(log x) = H(0)x−〈c,β〉Iβ(x) +O
(
(log x)ρ−1

)
,

where ρ := q + w −Rank
{

(1), . . . , 
(q+w)

}
and

Iβ(x) :=

∫

Aβ(x)

dy1 . . . dyq
∏q

i=1 y
1−�(i)(c)
i

,

with

Aβ(x) := {y ∈ [1,∞)q |
q∏

i=1

y
�(i)(ej)
i ≤ xβj ∀j = 1, . . . , n}.

• (iv) If Rank
{

(1), . . . , 
(q+w)

}
= n, H(0) �= 0 and B ∈ con∗ ({
(1), . . . , 
(q+w)

})
,

then deg(Qβ) = ρ = q + w − n.

Remark : If assumptions of point (iv) hold, then assumptions of the point (ii) also
clearly hold.

Proof of Theorem 2:
Let f : N

n → R+ be a multivariable multiplicative function. We assume that f
belongs to the class C(g, κ, c, δ) associated to the data (g, κ, c, δ) (see definitions 1
and 2). We assume also that the finite set

I = I(κ, g) := {ν ∈ N
n
0 | κ(ν) = 1 and g(ν) �= 0} is nonempty.

We denote by ν1, . . . ,νr the elements of I where r = #I,
and define the finite sequence qk (0 ≤ k ≤ r) by

q0 = 0 and qk =
k∑

j=1

g(νj) ∀k = 1, . . . , r.

We define the linear forms 
(i) (1 ≤ i ≤ qr) by


(i)(s) = 〈νk, s〉 if qk−1 < i ≤ qk and 1 ≤ k ≤ r.
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We define also the set J = J(c) = {j ∈ {1, . . . , n} | cj = 0}. We denote by w = #J
the cardinality of the set J and by j1 < · · · < jw its elements in increasing order.
We define also the w linear forms 
(q+i) (1 ≤ i ≤ w) by


q+i(s) = e∗ji(s) = sji (1 ≤ i ≤ w).

By using notation of our Theorem 1 it’s easy to see that the Dirichlet’s series associ-
ated to f is

F (s) =
∑

m1,...,mn≥1

f(m1, . . . ,mn)

ms1
1 . . .msn

n

= M(f ; s)

and

H(s) =

(
qr∏

i=1


(i)(s)

)
F (c+ s) =

(
∏

ν∈I

〈ν, s〉g(ν)
)

M(f ; c+ s) = H(f, c; s).

Our Theorem 1 implies then that F (s) converges absolutely if �(si) > ci ∀i = 1, . . . , n
and that there exists ε0 > 0 such that the function s → H(s) has holomorphic
continuation to the domain {s ∈ C

n | �(si) > −ε0 ∀i = 1, . . . , n} and verifies in it
the following estimate: for all ε > 0,

H(f, c; s) �ε

∏

ν∈I

(|〈ν, s〉|+ 1)g(ν)(1−
1
2
min(0,
(〈ν,s〉)))+ε .

For i ∈ {1, . . . , n} set h(i)(s) = si for all s = (s1, . . . , sn) ∈ C
n. Set also δ1 = δ3 = ε0,

q = qr and q′ = n. It follows then that s → H(s) has holomorphic continuation to
the domain

D(δ1, δ3) := {s ∈ C
n | �

(

(i)(s)

)
> −δ1 ∀i = 1, . . . , q and �

(
h(i)(s)

)
> −δ3 ∀i = 1, . . . , q′}

and verifies the estimate: for ε, ε′ > 0 we have uniformly in s ∈ D(δ1 − ε′, δ3 − ε′)

H(s) �
q∏

i=1

(
|�

(

(i)(s)

)
|+ 1)

)1−δ2 min(0,
(�(i)(s)))
(1 + (|�(s1)|+ · · ·+ |�(sn)|)ε) ,

where δ2 = 1/2. Thus, all the assumptions of Theorem A above hold. By applying
Theorem A with β = 1 = (1, . . . , 1), we deduce that there exist a polynomial Q1 of
degree at most

ρ = qr + w −Rank
{

(1), . . . , 
(q+w)

}
=

(
∑

ν∈I

g(ν)

)
+#J −Rank (I ∪ J)

and a positive constant η > 0 such that

N∞(f ; x) :=
∑

m=(m1,...,mn)∈Nn

‖m‖∞=maxi mi≤x

f(m1, . . . ,mn) = x‖c‖1Q1(lnx)+O
(
x‖c‖1−η

)
as x → ∞.

This ends the proof of the first part of our Theorem 2.

Assume now in addition that the two following assumptions hold:
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1. Rank (I ∪ J) = n;

2. 1 = (1, . . . , 1) is in the interior of the cone generated by I ∪ J ; that is 1 ∈
con∗ (I ∪ J) := {

∑
ν∈I∪J λνν | λν ∈ (0,∞) ∀ν ∈ I ∪ J},

By duality, we deduce thatRank
{

(1), . . . , 
(q+w)

}
= n and 1∗ ∈ con∗ ({
(1), . . . , 
(q+w)

})
,

Moreover since f is nonegative, our Theorem 1 implies that

H(0) = H(f, c;0) =
∏

p

(
1− 1

p

)∑
ν∈I g(ν)

⎛

⎝
∑

ν∈Nn
0

f(pν1 , . . . , pνn)

p〈ν,c〉

⎞

⎠ > 0.

It follows that assumptions of point (iv) (and therefore assumptions of point (ii)) of
Theorem B above hold. Theorem B implies then that

deg(Q1) = ρ =

(
∑

ν∈I

g(ν)

)
+#J − n

and
Q1(log x) = H(0)x−‖c‖1I1(x) +O

(
(log x)ρ−1

)
, (21)

where

I1(x) =

∫

A1(x)

dy1 . . . dyqr∏qr
i=1 y

1−�(i)(c)
i

,

with

A1(x) := {y ∈ [1,∞)qr |
qr∏

i=1

y
�(i)(ej)
i ≤ x ∀j = 1, . . . , n}.

By using notations of Definition 3, it’s easy to see that

I1(x) = In(I,u, c; x) and A1(x) = A(I,u; x),

where u is the sequence u = (g(ν))ν∈I .
Since the degree of the polynomial Q1 is equal to ρ =

(∑
ν∈I g(ν)

)
+#J − n, there

exists a positive constant C > 0 such that Q1(x) = Cxρ + O (xρ−1) as x → ∞ and
(21) implies that

H(0)x−‖c‖1I1(x) = C(log x)ρ +O
(
(log x)ρ−1

)
.

It follows that

C = H(0) lim
x→∞

x−‖c‖1(log x)−ρ I1(x) = H(0) lim
x→∞

x−‖c‖1(log x)−ρ In(I,u, c; x).

We deduce that the main term of N∞(f ; x) is given by

N∞(f ; x) = Cn(f)Kn(f, ‖‖∞) x‖c‖1(lnx)ρ +O
(
(ln x)ρ−1

)
as x → ∞,

where Cn(f) := H(0) = H(f, c;0) > 0 is defined by the Euler product (6) and

Kn(f, ‖‖∞) := lim
x→∞

In(I,u, c; x) x
−‖c‖1(lnx)−ρ > 0.

This ends the proof of Theorem 2.
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4.2. Proof of Theorem 3

Let f : Nn → R be a multivariable multiplicative function. We assume that f belongs
to the class C(g, κ, c, δ) associated to the data (g, κ, c, δ) (see definitions 1 and 2).
We assume also that the finite set

I = I(κ, g) := {ν ∈ N
n
0 | κ(ν) = 1 and g(ν) �= 0} is nonempty.

We define the set Ic := { 1
〈ν,c〉ν | ν ∈ I} and the sequence u := (u(β))β∈Ic where

u(β) =
∑

ν∈I; 1
〈ν,c〉ν=β

g(ν) for all β ∈ Ic.

We Define also the pair Tc := (Ic,u).
Theorem 1 implies that

s → M(f ; s) :=
∑

m1≥1,...,mn≥1

f(m1, . . . ,mn)

ms1
1 . . .msn

n

converges absolutely in the domain {s ∈ C
n | �(si) > ci ∀i = 1, . . . , n}; and that

there exists ε0 > 0 such that the function

s → H(f ; Tc; s) :=

(
∏

β∈Ic

〈β, s〉u(β)
)

M(f ; c+ s)

=

(
∏

ν∈I

〈ν, c〉−g(ν)

)(
∏

ν∈I

〈ν, s〉g(ν)
)

M(f ; c+ s)

=

(
∏

ν∈I

〈ν, c〉−g(ν)

)
H(f, c; s) (22)

has holomorphic continuation to the domain {s ∈ C
n | �(si) > −ε0 ∀i = 1, . . . , n}

and verifies in it the following estimate: for all ε > 0,

H(f, Tc; s) �ε

∏

ν∈I

(|〈ν, s〉|+ 1)g(ν)(1−
1
2
min(0,
(〈ν,s〉)))+ε ;

We deduce that f is of finite type with Tc := (Ic,u) as a regularizing pair (see Defi-
nition 2 of [2] (2012)). It follows then from Corollary 2 of [2] (2012) that there exist
a polynomial Q of degree at most

ρ :=

(
∑

β∈Ic

u(β)

)
−Rank(Ic) =

(
∑

ν∈I

g(ν)

)
−Rank(I)
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and a positive constant μ > 0 such that

Nd(f ; x) :=
∑

m=(m1,...,mn)∈Nn

‖m‖d=
d
√

md
1+···+md

n≤x

f(m1, . . . ,mn) = x‖c‖1Q(ln x)+O
(
x‖c‖1−μ

)
as x → ∞.

This ends the proof of part 1 of Theorem 3.

Assume now in addition that Rank(I) = n and 1 ∈ con∗ (I). It follows that

1. Rank(Ic) = n and it’s clear then that there exists a function holomorphic in a
tubular neighborhood of 0 such that H(f, Tc; s) = K ((〈β, s〉)β∈Ic);

2. 1 ∈ con∗ (Ic).

Therefore, the additional assumptions 1 and 2 of Theorem 3 of [2] (2012) are satisfied
and the second part of Corollary 2 of [2] (2012) implies then that

Nd(f ; x) = C0(f, Pd) x
‖c‖1(lnx)ρ +O

(
(ln x)ρ−1

)
as x → ∞,

where C0(f, Pd) :=
H(f, Tc;0)d

ρ+1 A0(Tc, Pd)

‖c‖1 ρ!
and A0(Tc, Pd) > 0 is the mixed vol-

ume constant (see §2.3.3 of [2] (2012)) associated to the pair Tc := (Ic,u) and the
polynomial Pd = Xd

1 + · · ·+Xd
n.

Combining (22) and the expression of H(f, c;0) given by theorem 1 implies that

H(f, Tc;0) =

(
∏

ν∈I

〈ν, c〉−g(ν)

)
Cn(f),

where Cn(f) := H(f, c;0) > 0 is defined by the Euler product (6). Moreover, if we
set

Kn(f, ‖‖d) :=
(
∏

ν∈I

〈ν, c〉−g(ν)

)
dρ+1 A0(Tc, Pd)

‖c‖1 ρ!
> 0,

then the the constant C0(f, Pd) is positive and is given by

C0(f, Pd) = Cn(f) Kn(f, ‖‖d) > 0.

In particular, the degree of the polynomial Q is equal to ρ =
(∑

ν∈I g(ν)
)
− n. This

ends the proof of Theorem 3.

5. Proof of Corollary 1

Define the function g1 : N
n
0 → N0 by

g1(ν) =

{
1 if ∃i �= j ∈ {1, . . . , n} such that νi = νj = ‖ν‖∞;
‖ν‖∞ −max ({νi | i = 1, . . . , n} \ {‖ν‖∞}) + 1 otherwise,
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where ‖ν‖∞ = maxi=1,...,n νi.
We will first prove the following needed lemma.

Lemma 4. We have

cn(p
ν1 , . . . , pνn) = g1(ν) p

‖ν‖1−‖ν‖∞ +O
(
(1 + ‖ν‖1)p‖ν‖1−‖ν‖∞−1

)

uniformly in ν = (ν1, . . . , νn) ∈ N
n
0 and p prime number.

Proof of Lemma 4:
In the proof of this lemma we will use the notations: a ∧ b = min(a, b) and a ∨ b =
max(a, b).
First we recall the following formula proved by Tóth in [8] (2012):

cn(p
ν1 , . . . , pνn) =

∑

0≤�i≤vi
i∈�1,n�

ϕ(p�1) · · ·ϕ(p�n)
ϕ (pmax{�1,...,�n})

, (23)

where ϕ is the Euler’s totient function.
If n = 1, then c1(p

ν1) = 1 + ν1 and the lemma holds.
Let n ≥ 2. Set k = n− 1 ∈ N.
Let p be a prime number and ν = (ν1, . . . , νn) ∈ N

n
0 . Without loss of generality we

can assume that
ν1 ≤ ν2 ≤ · · · ≤ νn.

It follows that

cn(p
ν1 , . . . , pνn) =

∑

0≤�i≤νi
i∈�1,k+1�

�1∨···∨�k≤�k+1

ϕ(p�1) · · ·ϕ(p�k) +
∑

0≤�i≤νi
i∈�1,k+1�

�1∨···∨�k>�k+1

ϕ(p�k+1)
ϕ(p�1) · · ·ϕ(p�k)
ϕ (pmax{�1,...,�k})

=

νk+1∑

�=0

pν1∧�+···+νk∧� +
∑

0≤�i≤νi
i∈�1,k�

�1∨···∨�k≥1

ϕ(p�1) · · ·ϕ(p�k)
ϕ (pmax{�1,...,�k})

�1∨···∨�k−1∑

�k+1=0

ϕ(p�k+1)

= (νk+1 − νk + 1)pν1+···+νk +

νk−1∑

�=0

pν1∧�+···+νk∧�

+
∑

0≤�i≤νi
i∈�1,k�

�1∨···∨�k≥1

ϕ(p�1) · · ·ϕ(p�k)
ϕ (pmax{�1,...,�k})

p�1∨···∨�k−1

= (νk+1 − νk + 1)pν1+···+νk +

νk−1∑

�=0

pν1∧�+···+νk∧� +
∑

0≤�i≤νi
i∈�1,k�

ϕ(p�1) · · ·ϕ(p�k)
p− 1

− 1

p− 1
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= (νk+1 − νk + 1)pν1+···+νk +

νk−1∑

�=0

pν1∧�+···+νk∧� +
pν1+···+νk − 1

p− 1

= (νk+1 − νk + 1)pν1+···+νk +

νk−1∑

�=0

pν1∧�+···+νk−1∧�p� +

ν1+···+νk−1∑

�=0

p�

Thus, for ν = (ν1, . . . , νn) ∈ N
n
0 such that ν1 ≤ ν2 ≤ · · · ≤ νn, we have

cn(p
ν1 , . . . , pνn) = (νn−νn−1+1)pν1+···+νn−1+

νn−1−1∑

�=0

pν1∧�+···+νn−2∧�p�+

ν1+···+νn−1−1∑

�=0

p�

(24)
We deduce that

0 ≤ cn(p
ν1 , . . . , pνn)− (νn − νn−1 + 1)p‖ν‖1−‖ν‖∞

≤ pν1+···+νk−1

νk−1∑

�=0

p� + (ν1 + · · ·+ νk)p
ν1+···+νk−1

≤ (ν1 + · · ·+ νk−1 + 2νk)p
ν1+···+νk−1 ≤ 2‖ν‖1 p‖ν‖1−‖ν‖∞−1.

This ends the proof of Lemma 4.

We will now use Lemma 4 to prove Corollary 1.
It’s clear that cn : (m1, . . . ,mn) �→ cn(m1, . . . ,mn) is a multiplicative function. More-
over, Lemma 4 implies that cn belongs to the class C(g, κ, c, δ) (see definition 2), where
g = g1, c = 1 = (1, . . . , 1), δ = 1 and κ is the function defined by κ(ν) = maxi=1,...,n νi
∀ν ∈ N

n
0 . Furthermore, if we denote by (e1, . . . , en) the canonical basis of Rn, then

I = I(κ, g) := {ν ∈ N
n
0 | κ(ν) = 1 and g(ν) �= 0} = {0, 1}n \ {0}.

Since J = {ei | ci = 0} = ∅ and e1, . . . , en ∈ I = I ∪ J , it follows that the two
assumptions Rank(I ∪ J) = n and 1 ∈ con∗ (I ∪ J) hold. Set

ρ :=

(
∑

ν∈I

g(ν)

)
+#J − n =

(
∑

ν∈I

g(ν)

)
− n.

Since g(ei) = 2 ∀i = 1, . . . , n and g(ν) = 1 ∀ν ∈ I \ {e1, . . . , en}, we have

ρ = 2n+ (#I − n)− n = #I = 2n − 1.

Theorem 2 implies then that there exist a polynomial Q1 of degree ρ and a positive
constant μ1 > 0 such that

Gn(x) :=
∑

1≤m1,...,mn≤x

cn(m1, . . . ,mn) = xnQ1(lnx) +O
(
xn−μ1

)
as x → ∞,

= Cn(cn)Kn(cn, ‖‖∞) xn(lnx)2
n−1 +O

(
xn(lnx)2

n−2
)

as x → ∞,
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where

Cn(cn) := H(cn, c;0) =
∏

p

(
1− 1

p

)2n+n−1
⎛

⎝
∑

ν∈Nn
0

cn(p
ν1 , . . . , pνn)

p‖ν‖1

⎞

⎠ > 0

and
Kn(cn, ‖‖∞) := lim

x→∞
In(I,u; x) x

−n(ln x)−2n+1 > 0, where

In(I,u, c; x) is the integral (see definition 3) associated to the set I = {0, 1}n \ {0}
and to the sequence u = (u(ν))ν∈I defined by u(ei) = 2 ∀i = 1, . . . , n and u(ν) = 1
∀ν ∈ I \ {e1, . . . , en} and to the vector c = 1. This ends the proof of corollary 1.

6. Proof of Corollaries 2, 3, 4, 5 and 6

6.1. Proof of Corollary 2

Let sn : Nn → R+ be the function defined by

sn(m1, . . . ,mn) =
1

lcm(m1, . . . ,mn)
∀(m1, . . . ,mn) ∈ N

n.

It clear that the function sn is multiplicative and that for ν = (ν1, . . . , νn) ∈ N
n
0 and

p prime number, we have sn(p
ν1 , . . . , pνn) = p−maxi=1,...,n νi . Thus, sn belongs to the

class C(g, κ, c, δ) (see definition 2), where g ≡ 1, c = 0 = (0, . . . , 0), δ = 1 and κ is
the function defined by κ(ν) = maxi=1,...,n νi ∀ν ∈ N

n
0 .

Moreover, we have

I = I(κ, g) := {ν ∈ N
n
0 | κ(ν) = 1 and g(ν) �= 0} = {0, 1}n \ {0}

and J = {ei | ci = 0} = {e1, . . . , en}. It follows that the two assumptions Rank(I ∪
J) = n and 1 ∈ con∗ (I ∪ J) hold. Moreover, ρ :=

(∑
ν∈I g(ν)

)
+ #J − n =(∑

ν∈I g(ν)
)
= 2n − 1.

Theorem 2 implies then that there exist a polynomial Q2 of degree ρ = 2n − 1 and a
positive constant μ2 > 0 such that

Sn(x) :=
∑

1≤m1,...,mn≤x

1

lcm(m1, . . . ,mn)
= Q2(lnx) +O(x−μ2) as x → ∞,

= Cn(sn)Kn(sn, ‖‖∞) (ln x)2
n−1 +O

(
(lnx)2

n−2
)

as x → ∞,

where

Cn(sn) := H(cn, c;0) =
∏

p

(
1− 1

p

)2n−1
⎛

⎝
∑

ν∈Nn
0

1

p‖ν‖∞

⎞

⎠

=
∏

p

(
1− 1

p

)2n−1
( ∞∑

k=0

(k + 1)n − kn

pk

)
> 0,
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and Kn(sn, ‖‖∞) := lim
x→∞

In(I,u, c; x) (ln x)
−2n+1 > 0, where

In(I,u, c; x) is the integral (see definition 3) associated to I = {0, 1}n \ {0}, to the
sequence u = (u(ν))ν∈I defined by u(ν) = 1 ∀ν ∈ I and to the vector c = 0. This
ends the proof of corollary 2.

6.2. Proof of Corollary 3

Let n ∈ N \ {1}. Let un : Nn → R+ be the function defined by

un(m1, . . . ,mn) =
1

lcm(m1, . . . ,mn)
if gcd(m1, . . . ,mn) = 1 and un(m1, . . . ,mn) = 0 otherwise.

It is clear that the function un is multiplicative and that for ν = (ν1, . . . , νn) ∈ N
n
0

and p prime number, we have

un(p
ν1 , . . . , pνn) = p−maxi=1,...,n νi if min

i=1,...,n
νi = 0 and un(p

ν1 , . . . , pνn) = 0 otherwise.

Thus, un belongs to the class C(g, κ, c, δ) (see definition 2), where c = 0 = (0, . . . , 0),
δ = 1, κ is the function defined by κ(ν) = maxi=1,...,n νi ∀ν ∈ N

n
0 and g is the function

defined by
g(ν) = 1 if min

i=1,...,n
νi = 0 and g(ν) = 0 otherwise.

Thus, we have I = I(κ, g) := {ν ∈ N
n
0 | κ(ν) = 1 and g(ν) �= 0} = {0, 1}n \ {0,1}

and J = {ei | ci = 0} = {e1, . . . , en}. It follows that the two assumptions Rank(I ∪
J) = n and 1 ∈ con∗ (I ∪ J) hold. Moreover, ρ :=

(∑
ν∈I g(ν)

)
+ #J − n =(∑

ν∈I g(ν)
)
= 2n − 2.

Theorem 2 implies then that there exist a polynomial Q3 of degree 2
n − 2 ans μ3 > 0

such that

Un(x) :=
∑

1≤m1,...,mn≤x
gcd(m1,...,mn)=1

1

lcm(m1, . . . ,mn)
= Q3(lnx) +O(x−μ3) as x → ∞

= Cn(un)Kn(un, ‖‖∞) (ln x)2
n−2 +O

(
(lnx)2

n−3
)

as x → ∞,

where

Cn(un) := H(cn, c;0) =
∏

p

(
1− 1

p

)2n−2

⎛

⎜⎜⎝
∑

ν∈Nn0
mini=1,...,n νi=0

1

p‖ν‖∞

⎞

⎟⎟⎠

=
∏

p

(
1− 1

p

)2n−2
(
1 +

∞∑

k=1

(k + 1)n + (k − 1)n − 2kn

pk

)

=
∏

p

(
1− 1

p

)2n−1
( ∞∑

k=0

(k + 1)n − kn

pk

)
> 0,
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and Kn(un, ‖‖∞) := lim
x→∞

In(I,u, c; x) (ln x)
−2n+2 > 0, where

In(I,u, c; x) is the integral (see definition 3) associated to I = {0, 1}n \ {0,1}, to the
sequence u = (u(ν))ν∈I defined by u(ν) = 1 ∀ν ∈ I and to the vector c = 0. This
ends the proof of corollary 3.

6.3. Proof of Corollary 4

Let vn : Nn → R+ be the function defined by

vn(m1, . . . ,mn) =
m1 . . .mn

lcm(m1, . . . ,mn)
∀(m1, . . . ,mn) ∈ N

n.

It is clear that the function f is multiplicative and that for ν = (ν1, . . . , νn) ∈ N
n
0 and

p prime number, we have

vn(p
ν1 , . . . , pνn) = p‖ν‖1−maxi=1,...,n νi .

Thus, vn belongs to the class C(g, κ, c, δ) (see definition 2), where g ≡ 1, c = 1 =
(1, . . . , 1), δ = 1 and κ is the function defined by κ(ν) = maxi=1,...,n νi ∀ν ∈ N

n
0 .

Moreover, we have

I = I(κ, g) := {ν ∈ N
n
0 | κ(ν) = 1 and g(ν) �= 0} = {0, 1}n \ {0}

and J = {ei | ci = 0} = ∅. It follows that the two assumptions Rank(I ∪ J) = n and
1 ∈ con∗ (I ∪ J) hold. Moreover, ρ :=

(∑
ν∈I g(ν)

)
+#J − n = 2n − 1− n.

Theorem 2 implies then that there exist a polynomial Q4 of degree ρ = 2n − n − 1
and a positive constant μ4 > 0 such that

Vn(x) :=
∑

1≤m1,...,mn≤x

m1 . . . ,mn

lcm(m1, . . . ,mn)
= xnQ4(lnx) +O(xn−μ4) as x → ∞

= Cn(vn)Kn(vn, ‖‖∞) xn (lnx)2
n−n−1 +O

(
xn (lnx)2

n−n−2
)

as x → ∞,

where

Cn(vn) := H(cn, c;0) =
∏

p

(
1− 1

p

)2n−1
⎛

⎝
∑

ν∈Nn
0

1

p‖ν‖∞

⎞

⎠

=
∏

p

(
1− 1

p

)2n−1
( ∞∑

k=0

(k + 1)n − kn

pk

)
> 0,

and Kn(vn, ‖‖∞) := lim
x→∞

In(I,u, c; x) x
−n(lnx)−2n+n+1 > 0, where

In(I,u, c; x) is the integral (see definition 3) associated to I = {0, 1}n \ {0}, to the
sequence u = (u(ν))ν∈I defined by u(ν) = 1 ∀ν ∈ I and to the vector c = 1. This
ends the proof of corollary 4.
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6.4. Proof of Corollaries 5 and 6

Proof of corollary 5 (resp. corollary 6) is similar to the proof of corollary 1 (resp. corol-
lary 4) by using Theorem 3 instead of Theorem 2 and the identity

∏
ν∈{0,1}n, ‖ν‖1≥2 ‖ν‖1 =∏n

k=2 k
(nk).

7. Explicit computations of the constants Cn(.) and Kn(., .) in dimensions
n = 2 and n = 3

We will use the software WX Maxima to compute some iterated integrals below.

7.1. Computation of C2(c2) in corollaries 1 and 5

The identity (24) implies that for ν ∈ N
2
0 such that 0 ≤ ν1 ≤ ν2 we have

c2(p
ν1 , pν2) = (ν2 − ν1 − 1)pν1 + 2

pν1+1 − 1

p− 1
.

We deduce by symmetry that

C2(c2) =
∏

p

(
1− 1

p

)5
[
2
∑

ν2≥0

ν2∑

ν1=0

c2(p
ν1 , pν2)

pν1+ν2
−
∑

ν1≥0

c2(p
ν1 , pν1)

p2ν1

]

=
∏

p

(
p− 1

p

)5 [
2
p2(p2 + p+ 2)

(p− 1)3(p+ 1)
− p(p2 + 1)

(p− 1)3

]
=
∏

p

(
1− 1

p2

)2

=
1

ζ2(2)
=

36

π4
.

7.2. Computation of Cn(.) (n = 2, 3) in corollaries 2, 3, 4 and 6

Constants Cn(.) in corollaries 2, 3, 4 and 6 are equal. We will denote them by Cn in
this subsection.
• In dimension n = 2, we have

C2 =
∏

p

(
1− 1

p

)3
(
∑

k≥0

2k + 1

pk

)
=
∏

p

(p− 1)3

p3

(
2p

(p− 1)2
+

p

p− 1

)
=
∏

p

p2 − 1

p2
= ζ(2)−1 =

6

π2
.

• In dimension n = 3, we have

C3 =
∏

p

(
1− 1

p

)7
(
∑

k≥0

3k2 + 3k + 1

pk

)
=
∏

p

(p− 1)7

p7

(
3p(p+ 1)

(p− 1)3
+

3p

(p− 1)2
+

p

p− 1

)

=
∏

p

(p− 1)4(p2 + 4p+ 1)

p6
=
∏

p

(
1− 9

p2
+

16

p3
− 9

p4
+

1

p6

)
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7.3. Computation of Kn(cn, ‖‖∞) (n = 2, 3) in corollary 1

• In dimension n = 2, we have: I = {e1, e2, e1 + e2}, u = (2, 2, 1) and c = 1. It
follows from definition 3 that

I2(I,u, c; x) =

∫

y∈[1,+∞[5

y1y2y5≤x
y3y4y5≤x

y5 dy =

∫

y5∈[1,x[

y5

( ∫

y1,y2∈[1,+∞[
y1y2≤x/y5

dy1 dy2

)2

dy5

=

∫

y5∈[1,x[

y5

(
x

y5
ln

(
x

y5

)
− x

y5
+ 1

)2

dy5

=
1

3
x2 ln3(x)− x2 ln2(x) + x2 ln(x)− 2x ln(x) +

x2

2
− 1

2
,

which implies that

K2(c2, ‖‖∞) := lim
x→∞

I2(I,u, c; x) x
−2(ln x)−3 =

1

3
.

• In dimension n = 3: We have I = {e1, e2, e3, e1 + e2, e1 + e3, e2 + e3, e1 + e2 + e3},
u = (2, 2, 2, 1, 1, 1, 1) and c = 1. It follows from definition 3 that

I3(I,u, c; x) =

∫

y∈[1,+∞[10

y1y2y7y8y10≤x
y3y4y7y9y10≤x
y5y6y8y9y10≤x

y7y8y9y
2
10 dy =

∫

y8,y9,y10∈[1,+∞[
y8y9y10≤x

y8y9y
2
10

∫

y1,...,y7∈[1,+∞[
y1y2y7≤x/y8y10
y3y4y7≤x/y9y10
y5y6≤x/y8y9y10

y7 dy.

By using the software WX Maxima we obtain that

I3(I,u, c; x) = x3

(
47

16128
ln7(x)− 217

11520
ln6(x) +

11

240
ln5(x)− 1

32
ln4(x) +

4

3
ln3(x)

−1

4
ln(x)− 973

36

)
+O

(
x2+ε

)
.

which implies that K3(c3, ‖‖∞) := lim
x→∞

I3(I,u, c; x) x
−3(lnx)−7 =

47

16128
.

7.4. Computation of Kn(sn, ‖‖∞) (n = 2, 3) in corollary 2

• In dimension n = 2: We have I = {e1, e2, e1 + e2}, u = (1, 1, 1) and c = 0. It
follows that

I2(I,u, c; x) =

∫

y1,y2,y3∈[1,+∞[
y1y3≤x
y2y3≤x

dy

y1y2y3
=

1

3
ln3(x).
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which implies that K2(s2, ‖‖∞) := limx→∞ I2(I,u, c; x) (ln x)
−3 = 1

3
.

• In dimension n = 3: We have I = {e1, e2, e3, e1 + e2, e1 + e3, e2 + e3, e1 + e2 + e3},
u = 1 and c = 0. It follows that

I3(I,u, c; x) =

∫

y1,··· ,y7∈[1,+∞[
y1y4y5y7≤x
y2y4y6y7≤x
y3y5y6y7≤x

dy

y1y2y3y4y5y6y7
= ln7(x)

∫

z1,...,z7∈[0,+∞[
z1+z4+z5+z7≤1
z2+z4+z6+z7≤1
z3+z5+z6+z7≤1

dz =
11

3360
ln7(x).

We deduce that K3(s3, ‖‖∞) := limx→∞ I3(I,u, c; x) (ln x)
−7 = 11

3360
.

7.5. Computation of Kn(un, ‖‖∞) (n = 2, 3) in corollary 3

• In dimension n = 2: We have I = {e1, e2}, u = (1, 1) and c = 0. It follows that

I2(I,u, c; x) =

∫

y1,y2∈[1,+∞[
y1≤x, y2≤x

dy

y1y2
= ln2(x)

and therefore that K2(u2, ‖‖∞) := limx→∞ I2(I,u, c; x) (ln x)
−2 = 1.

• In dimension n = 3: We have I = {e1, e2, e3, e1 + e2, e1 + e3, e2 + e3}, u = 1 and
c = 0. It follows that

I3(I,u, c; x) =

∫

y1,··· ,y6∈[1,+∞[
y1y4y5≤x
y2y4y6≤x
y3y5y6≤x

dy

y1y2y3y4y5y6
= ln6(x)

∫

z1,...,z6∈[0,+∞[
z1+z4+z5≤1
z2+z4+z6≤1
z3+z5+z6≤1

dz =
11

480
ln6(x)

and therefore that K3(u3, ‖‖∞) := limx→∞ I3(I,u, c; x) (ln x)
−6 = 11

480
.

7.6. Computation of Kn(vn, ‖‖∞) (n = 2, 3) in corollary 4

• In dimension n = 2: We have I = {e1, e2, e1 + e2}, u = (1, 1, 1) and c = (1, 1). It

follows that I2(I,u, c; x) =

∫

y1,y2,y3∈[1,+∞[
y1y3≤x, y2y3≤x

y3dy = x2 ln(x)− 3

2
x2+2x− 1

2
and therefore

that K2(v2, ‖‖∞) := limx→∞ I2(I,u, c; x) x
−2 (lnx)−1 = 1.

• In dimension n = 3: We have I = {e1, e2, e3, e1 + e2, e1 + e3, e2 + e3, e1 + e2 + e3},
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u = 1 and c = (1, 1, 1). It follows that

I3(I,u, c; x) =

∫

y1,··· ,y7∈[1,+∞[
y1y4y5y7≤x
y2y4y6y7≤x
y3y5y6y7≤x

y4y5y6y
2
7dy = ln7(x)

∫

z1,...,z7∈[0,+∞[
z1+z4+z5+z7≤1
z2+z4+z6+z7≤1
z3+z5+z6+z7≤1

xz1+···+z3+2z4+···+2z6+3z7dz

= ln7(x)

∫

z5,z6,z7∈[0,+∞[
z5+z6+z7≤1

∫

z1,z2,z4∈[0,+∞[
z1+z4≤1−z5−z7
z2+z4≤1−z6−z7

xz1+z2+2z4+···+2z6+3z7
x1−z5−z6−z7 − 1

ln(x)
dz1,2,4 dz5,6,7

= ln4(x)

∫

z5,z6,z7∈[0,+∞[
z5+z6+z7≤1

1−z7−z5∨z6∫

z4=0

x2z4+···+2z6+3z7(x1−z5−z6−z7 − 1)(x1−z4−z5−z7 − 1)×

× (x1−z4−z6−z7 − 1) dz4 dz5,6,7

By symmetry in z5 and z6 we get

I3(I,u, c; x) = 2 ln4(x)

⎛

⎜⎝
1∫

z7=0

(1−z7)/2∫

z6=0

z6∫

z5=0

1−z6−z7∫

z4=0

+

1∫

z7=0

1−z7∫

z6=(1−z7)/2

1−z6−z7∫

z5=0

1−z6−z7∫

z4=0

⎞

⎟⎠

=
1

16
x3 ln4(x)− 1

4
x3 ln3(x) +

5

2
x3 ln(x)− 67

12
x3 +O(x2+ε).

We deduce that K3(v3, ‖‖∞) := limx→∞ I3(I,u, c; x) x
−3 (lnx)−4 = 1

16
.

7.7. Computation of Kn(., ‖‖d) (n = 2, 3) in corollaries 5 and 6

7.7.1. Sargos’s volume constant

First we will recall some notations from §2.3.1 of [2] (2012). LetQ(X) =
∑

α∈supp(Q) aαX
α

be a generalized polynomial with positive coefficients that depends upon all the vari-
ables X1, . . . , Xn. We apply the discussion in [7] (1987) (see also [6] (1988)) to define
a “volume constant” for Q.

By definition, the Newton polyhedron ofQ (at infinity) is the set E∞(Q) :=
(
conv(supp(Q))− R

n
+

)
.

Let G0 be the smallest face of E∞(Q) which meets the diagonal Δ = R+1. We denote
by σ0 the unique positive real number t that satisfies t−11 ∈ G0. Thus, there exists

a unique vector subspace
−→
G 0 of largest codimension ρ0 such that G0 ⊂ σ−1

0 1 +
−→
G 0.

Both ρ0, σ0 evidently depend upon Q, but it is not necessary to indicate this in the
notation. We also set QG0(X) =

∑
α∈G0

aαX
α.

There exist finitely many facets of E∞(Q) that intersect in G0. We denote their
normalized polar vectors by λ1, . . . ,λN .
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By a permutation of the coordinates Xi one can suppose that ⊕ρ0
i=1Rei ⊕

−→
G0 = R

n ,
and that {em+1, . . . , en} is the set of vectors to which G0 is parallel (i.e. for which
G0 = G0 − R+ei). If G0 is compact then m = n.
Set Λ = Conv{0,λ1, . . . ,λN , eρ0+1, . . . , en}. It follows that dimΛ = n.

Definition 4. The volume constant associated to Q is:

A0(Q) := n! V ol(Λ)

∫

[1,+∞)n−m

(∫

R
m−ρ0
+

P−σ0
G0

(1,x,y) dx

)
dy .

In ([7] (1987), chap 3, th. 1.6) (also see [6] (1988)), P. Sargos proved the following
important result:

Theorem (P. Sargos): Let Q be a generalized polynomial with positive coefficients.

Then s �→ Y (Q; s) :=

∫

[1,+∞)n
Q(x)−s dx converges absolutely in {�s > σ0}, and has

a meromorphic continuation to C with largest pole at s = σ0 of order ρ0. In addition,
the volume constant of Q is given by

A0(Q) = lim
s→σ0

(s− σ0)
ρ0 Y (Q; s) > 0. (25)

7.7.2. Mellin’s Formula

We will also use the following classical Mellin’s formula:
Let w1, . . . , wr ∈ C such that �(wi) > 0 ∀i = 0, . . . , r, Let ρ1, . . . , ρr > 0. Then, for
s ∈ C verifying �(s) > ρ1 + · · ·+ ρr, we have :

Γ(s)

(
∑r

k=0 wk)
s =

1

(2πi)r

∫

(ρ1)

· · ·
∫

(ρr)

Γ(s− z1 − · · · − zr)
∏r

i=1 Γ(zi) dz

ws−z1−···−zr
0 (

∏r
k=1 w

zk
k )

, (26)

where the notation
∫
(ρ)

denote the integral on the vertical line �(s) = ρ.

7.7.3. Computation of Kn(cn, ‖‖d) (n = 2, 3) in corollary 5

• In dimension n = 2: Corollary 5 implies that

K2(c2, ‖‖d) =
d4

24
A0(T , P ), (27)

where A0(T , P ) is the mixed volume constant (see §2.3.3 of [2] (2012)) associated to

the polynomial P = Xd
1 +Xd

2 and the pair T =
(
Ĩ ,u = (u(β))β∈Ĩ

)
, where
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Ĩ = {1
2
(e1 + e2), e1, e2}, and u

(
1
2
(e1 + e2)

)
= 1 and u(e1) = u(e2) = 2.

It follows then from the construction given in §2.3.3 of [2] (2012) that

A0(T , P ) = A0(Q), (28)

where A0(Q) is the volume constant associated to the polynomial

Q(X1, X2, X3, X4, X5) = X
d/2
1 Xd

2X
d
3 +X

d/2
1 Xd

4X
d
5 .

By using notations of §7.7.1, we have

E∞(Q) := conv
(
supp(Q)− R

5
+

)
= conv

(
{(d/2, d, d, 0, 0), (d/2, 0, 0, d, d)} − R

5
+

)
,

G0 = conv{(d/2, d, d, 0, 0), (d/2, 0, 0, d, d)}, σ0 = 2/d and ρ0 = 4.

Sargos’s Theorem above implies then that

A0(Q) = lim
s→2/d

(
s− 2

d

)4

Y (Q; s). (29)

We will now compute the principal part of the integral Y (Q; s).
First we remark that for �(s) > 2/d, we have

Y (Q; s) =

∫

[1,∞)5
(x

d/2
1 xd

2x
d
3+x

d/2
1 xd

4x
d
5)

−sdx1,2,3,4,5 =
2

d

1

s− 2
d

∫

[1,∞)4
(xd

2x
d
3+xd

4x
d
5)

−sdx2,3,4,5

(30)
Mellin’s formula (26) implies that for �(s) > 2/d,

∫

[1,∞)4
(xd

2x
d
3 + xd

4x
d
5)

−sdx2,3,4,5 =
1

2πi

∫

[1,∞)4

∫

(2/d)

Γ(s− z)Γ(z)

Γ(s)
(x2x3)

−d(s−z)(x4x5)
−dzdx2,3,4,5dz

=
1

2πi

∫

(2/d)

Γ(s− z)Γ(z)

d4Γ(s)

1
[
(s− z)− 1

d

]2
1

[
z − 1

d

]2dz

Moving the integration line to left until 1
2d

and using residues theorem imply that

∫

[1,∞)4
(xd

2x
d
3 + xd

4x
d
5)

−sdx2,3,4,5 =
1

2πi

∫

( 1
2d)

Γ(s− z)Γ(z)

d4Γ(s)

1
[
(s− z)− 1

d

]2
1

[
z − 1

d

]2dz (31)

+
Γ(1)

(
1
d

)
Γ
(
s− 1

d

)

d4Γ(s)
[
s− 2

d

]2 −
Γ
(
1
d

)
Γ(1)

(
s− 1

d

)

d4Γ(s)
[
s− 2

d

]2 +
2Γ

(
1
d

)
Γ
(
s− 1

d

)

d4Γ(s)
[
s− 2

d

]3

Since the integral in the right side of (31) defines a holomorphic function in �(s) > 3
2d
,

we deduce by using in addition (30) that

A0(Q) = lim
s→2/d

(
s− 2

d

)4

Y (Q; s) =
4Γ

(
1
d

)2

d5Γ
(
2
d

) . (32)
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Combining (27), (40) and (32) implies that

K2(c2, ‖‖d) =
1

6d

Γ
(
1
d

)2

Γ
(
2
d

) . (33)

• In dimension n = 3: Corollary 5 implies that

K3(c3, ‖‖d) =
d8

72× 7!
A0(T , P ), (34)

where A0(T , P ) is the mixed volume constant (see §2.3.3 of [2] (2012)) associated to

the polynomial P = Xd
1 +Xd

2 +Xd
3 and the pair T =

(
Ĩ ,u = (u(β))β∈Ĩ

)
, where

Ĩ =

{
1

3
(e1 + e2 + e3),

1

2
(e1 + e2),

1

2
(e1 + e3),

1

2
(e2 + e3), e1, e2, e3

}

and u = (1, 1, 1, 1, 2, 2, 2). It follows then from the construction given in §2.3.3 of [2]
(2012) that

A0(T , P ) = A0(Q), (35)

where A0(Q) is the volume constant associated to the polynomial

Q(x1, . . . , x10) = x
d/3
1 x

d/2
2 x

d/2
3 xd

5x
d
8 + x

d/3
1 x

d/2
2 x

d/2
4 xd

6x
d
9 + x

d/3
1 x

d/2
3 x

d/2
4 xd

7x
d
10.

By using notations of §7.7.1, we have
G0 = conv{(d

3
, d
2
, d
2
, 0, d, d, 0, 0, 0, 0), (d

3
, d
2
, 0, d

2
, 0, 0, d, d, 0, 0), (d

3
, 0, d

2
, d
2
, 0, 0, 0, 0, d, d)},

σ0 = 3/d and ρ0 = 8.

Sargos’s Theorem implies then that

A0(Q) = lim
s→3/d

(
s− 3

d

)8

Y (Q; s). (36)

We will now compute the principal part of the integral Y (Q; s) at s = 3/d.
Mellin’s formula (26) implies that for �(s) > 3/d,

Y (Q; s) =
24

d10
[
s− 3

d

] 1

(2πi)2

∫

(ρ1)=
3
2d

(ρ2)=
3
2d

Γ(s− z1 − z2)Γ(z1)Γ(z2)Γ(s)
−1 dz1,2

(
s− z1 − z2 − 1

d

)2 (
z1 + z2 − 2

d

) 2∏
j=1

[(
zj − 1

d

)2 (
s− zj − 2

d

)] .

By using the residue theorem, we obtain (the details of computation are left to the
reader) that for �(s) > 3/d,

Y (Q; s) =
372Γ

(
1
d

)2
Γ
(
s− 2

d

)

d10Γ(s)
[
s− 3

d

]8 +
H(s)

[
s− 3

d

]7 , (37)
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where H is a holomorphic function in the bigger domain Ω =
{
�(s) > 5

2d

}
.

Combining (34), (35), (36) and (37) implies that

K3(c3, ‖‖d) =
31 Γ

(
1
d

)3

30240 d2 Γ
(
3
d

) . (38)

7.7.4. Computation of Kn(vn, ‖‖d) (n = 2, 3) in corollary 6

• In dimension n = 2: Corollary 6 implies that

K2(v2, ‖‖d) =
d2

4
A0(T , P ), (39)

where A0(T , P ) is the mixed volume constant (see §2.3.3 of [2] (2012)) associated

tothe polynomial P = Xd
1 +Xd

2 and the pair T =
(
Ĩ ,u = (u(β))β∈Ĩ

)
, where

Ĩ = {1
2
(e1 + e2), e1, e2}, and u

(
1
2
(e1 + e2)

)
= u(e1) = u(e2) = 1.

It follows then from the construction given in §2.3.3 of [2] (2012) that

A0(T , P ) = A0(Q), (40)

where A0(Q) is the volume constant associated to the polynomial

Q(X1, X2, X3) = X
d/2
1 Xd

2 +X
d/2
1 Xd

3 .

By using notations of §7.7.1, we have

G0 = conv{(d/2, d, 0), (d/2, 0, d)}, σ0 = 2/d, ρ0 = 2 and Λ = conv

{
0,

1

d
(2, 0, 0),

1

d
(0, 1, 1), e3

}
.

It follows then from Definition 4 above that

A0(T , P ) = A0(Q) = 3!Vol(Λ)

∫

R+

Q(1, x3)
−2/d dx3 =

2

d3
Γ(1/d)2

Γ(2/d)
.

By using in addition (39) we obtain that

K2(v2, ‖‖d) =
1

2d

Γ(1/d)2

Γ(2/d)
. (41)

• In dimension n = 3: Corollary 6 implies that

K3(v3, ‖‖d) =
d5

3× 4!
A0(T , P ), (42)

where A0(T , P ) is the mixed volume constant (see §2.3.3 of [2] (2012)) associated to

the polynomial P = Xd
1 +Xd

2 +Xd
3 and the pair T =

(
Ĩ ,u = (u(β))β∈Ĩ

)
, where

Ĩ =

{
1

3
(e1 + e2 + e3),

1

2
(e1 + e2),

1

2
(e1 + e3),

1

2
(e2 + e3), e1, e2, e3

}
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and u = (1, 1, 1, 1, 1, 1, 1). It follows then from the construction given in §2.3.3 of [2]
(2012) that

A0(T , P ) = A0(Q), (43)

where A0(Q) is the volume constant associated to the polynomial

Q(x1, . . . , x7) = x
d/3
1 x

d/2
2 x

d/2
3 xd

5 + x
d/3
1 x

d/2
2 x

d/2
4 xd

6 + x
d/3
1 x

d/2
3 x

d/2
4 xd

7.

By using notations of §7.7.1, we have

G0 = conv{(d/3, d/2, d/2, 0, d, 0, 0), (d/3, d/2, 0, d/2, 0, d, 0), (d/3, 0, d/2, d/2, 0, 0, d)},

σ0 = 3/d and ρ0 = 5.

Sargos’s Theorem above implies then that

A0(Q) = lim
s→3/d

(
s− 3

d

)5

Y (Q; s). (44)

Using Mellin’s formula (26) as in the proof of (37) implies that for �(s) > 3/d, we
have

Y (Q; s) =

∫

[1,∞)7
(x

d/3
1 x

d/2
2 x

d/2
3 xd

5 + x
d/3
1 x

d/2
2 x

d/2
4 xd

6 + x
d/3
1 x

d/2
3 x

d/2
4 xd

7)
−sdx1,2,3,4,5,6,7

=
36Γ

(
s− 2

d

)
Γ
(
1
d

)2

d7Γ(s)
[
s− 3

d

]5 +
H(s)

[
s− 3

d

]4 ,

where H is a holomorphic function in the domain Ω =
{
�(s) > 5

2d

}
.

We deduce that

A0(T , P ) = A0(Q) =
36 Γ (1/d)3

d7 Γ (3/d)
.

It follows then from (42) that

K3(v3, ‖‖d) =
Γ (1/d)3

2 d2 Γ (3/d)
. (45)
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