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Abstract

We use multiple zeta functions to prove, under suitable assumptions, precise asymp-
totic formulas for the averages of multivariable multiplicative functions. As applica-
tions, we prove some conjectures on the average number of cyclic subgroups of the
group Zp, X - -+ X Ly, and multivariable averages associated with the LCM function.

Keywords: Mean values of multivariable arithmetic functions, multiplicative
functions, Zeta functions, meromorphic continuation, tauberian theorems,
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1. Introduction

Our paper is motivated by the following recent results and conjectures. Let n € N and
for my,...,m, € Nlet ¢,(mq,...,m,) denote the number of cyclic subgroups of the
group Zpp, X «++ X Zuy,,. W. G. Nowak and L. Téth [5] (2014) proved the asymptotic
formula

12
Z ca(my, my) = 2° (—4(111 z)? + az(Inx)® + a;(Inx) + ao) +O(:E%+€) as
1<mi,mao<z &

where ag, a; and ay are explicit constants. This error term was improved by L. Téth
and W. Zhai [9] (2018) into O(2*?(Inx)'3/2). The case n = 3 was investigated by L.
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Téth and W. Zhai [10] (2020) showing that

7
Z C3(m17 mao, mg) = x?’ Z Cj(hl I’)j + O(ZE8/3+6)7

1<mi,ma,m3<xz Jj=0

where ¢; (0 < j < 7) are explicit constants. For the proof they used a multidimen-
sional Perron formula and the complex integration method. It is natural to conjecture
that such a result holds for n > 4.

T. Hilberdink, F. Luca, and L. Té6th [4] (2020) investigated the following three aver-
ages associated with the LCM function:

Su(r) = ! | (1)

lem(my,...,my,)

1<ma,...,mp<z

V()= Y ! 2)

1<myq,..., mn <z 1Cm(m1’ te 7mn)’
ged(mq,..., mnp)=1
and . .
Vo(z) == Z L& 3
n( ) lcm(ml,...,mn) ( )

1<mq,...mp<z

By using the convolution method, they obtained in their paper asymptotic formulas
with error terms for Sy(z), Us(x) and Vi(x). For m > 3, they only obtained the
estimates

(In w)Qn’l < Sp(z) < (In a;)2n’1, (lnav)QL2 < U,(z) < (In x)Qn’Q,

" L Vy(z) < 2" (Inz)* ™2 as  x — oo,

and conjectured that asymptotic formulas with error terms also exist for these three
averages for n > 3.

In order to prove these conjectures, we introduce a reasonably large class of muti-
variable multiplicative functions (see Definition 2). For a function f : N* — Ry in
this class, we establish in Theorem 1 the existence of the meromorphic continuation
of the associated multiple zeta function

s=(81,...,8,) = M(f;s) = Z flmy, ..., ma)

mit ... .msn
mi>1,..,mp>1 n

and derive several precise properties of this meromorphic continuation. By combining
our Theorem 1 and La Breteche’s multivariable Tauberian Theorem (i.e., Theorems
1 and 2 of [1] (2001)) we deduce in our Theorem 2 a precise asymptotic formula for
the multivariable average

Noo(f;x) = Z f(my,...,m,) asx — oo,

m=(mq,..., mp ) ENT
[lm||co =max; m; <=



and derive from it four corollaries.

Our first application, namely Corollary 1, establishes the conjecture concerning the
number of cyclic subgroups of the group Z,, X -+ X Zy,,, in any dimension n. Our
Corollaries 2, 3 and 4 prove the conjectures on the three sums above associated with
the LCM function.

Variants of Theorem 2 with other norm choices can be obtained by combining our
Theorem 1 and the first author’s multivariable tauberian theorem (i.e., Corollary 2 of
2] (2012)). For example, for the class of Hélder’s norms [|x||g := ¢/|z1]7 + - + |z, ¢
(d > 1), we obtain in Theorem 3 an asymptotic for the multivariable average

Nu(f;x) = Z f(my,...,m,) asz — oo.

m=(mq,...,mpn)ENT

Imllg=§/md++md<a

As an application of Theorem 3, we derive in Corollaries 5 and 6 the analogues of
Corollaries 1 and 4 for the Hélder’s norms || |4
1.1. Notations

1. N={1,2,...}, Ng=NU{0}; Ry =[0,00).

2. The expression: f(\,y,x)<, g(x) uniformly in x € X and A € A means there
exists A = A(y) > 0, such that, Vx € X and VA € A |f(N\,y,x)| < Ag(x);

3. Letd € [1,+o0], for any x = (21, ..., 7,,) € R", weset ||x[|q = /|z1|¢ + ... + [2,]%,
and ||x||oc = max;_;,_, |z;|. We denote the canonical basis of R" by (ey,...,e;,)
(i.e. ;;, =1if i = j and e;; = 0 if ¢ # j). The standard inner product on R"
is denoted by (.,.). We set also 0 = (0,...,0) and 1 = (1,...,1);

4. We denote a vector in C" by s = (s1,...,8,), and write s = o + iT, where
o= (01,...,0,) and T = (71, ...,7,) are the real resp. imaginary components
of s (i.e. 0; = R(s;) and 7, = J(s;) for all 7). We also write (x,s) for >, z;s; if

x € R" s e C™

5. A function f : N” — C is said to be multiplicative if for all m = (my,...,m,) €
N™and m’' = (m/,...,m!) € N" satisfying gcd (lem (m;) ,lem (m})) = 1 we have
/ (mlmlla S ﬂnnm;@) - f(m) ’ f(ml);

6. Let F' be a meromorphic function on a domain D of C™ and let S be the support
of its polar divisor. F is said to be of moderate growth if Ja,b > 0 such that
V6 > 0, F(s) <op5 1+ 7|11+ yniformly in s = o + it € D verifying
d(s,S) > 9;



2. A class of multivariable multiplicative functions and statement of the
main results

2.1. A class of multivariable multiplicative functions
To simplify the exposition, we introduce first the following three definitions.
Definition 1. A quadruple (g, k,c, ) is said to be a data if
1. g : Ny — Ny s a function of subexponential growth; that is g verifies for any
e >0 g(v) <. eIt uniformly in v € NZ;

2. k: Ny = [1,00) U{0} is a function verifying £(0) = 0 and inf,enm (o} L >0

K)
(It

3. c=(c1,...,¢,) €10,00)" and § € (0,00).

We now introduce the class of multivariable multiplicative functions on which we will
focus in this paper.

Definition 2. Let (g,k,c,0) be a data as in definition 1.
A multivariable multiplicative function f : N — R is said to be in the class C(g, k, ¢, 0)
if for any € > 0,

Fs ) = glo) pO ) < A e, (@)

uniformly in v € Ny and p prime number.

We will need also the following integral definition.

Definition 3. Let I be a finite subset of Nj \ {0}, u = (u(v)),; be a finite sequence
of positive integers and ¢ = (cy,...,¢,) € [0,00)". We denote by v',... V" the
elements of I where r = #1, and define the finite sequence g, (0 < k <) by

k
G =0 and qk:Zu(Vj) Vk=1,...,r.
j=1

We define then for x > 0 the integral

dyy...d
Z.(I,u,c;z) ::/ yqr 1—(vF o)’
ALwz) [Th— 1He ar_1+1 Yo

r dk
where A(I,u;z) ==y € [1,00)%; H H yéuk’ej> <z Vj=1,...,n

k=1 e:qk,1+1



2.2. Statement of the main results

Let f : N®* — R be a multivariable multiplicative function. We assume that f
belongs to the class C(g, k,c,d) associated to the data (g,x,c,d) (see definitions 1
and 2 above).

We assume also that the finite set

I =1(k,g) ={vreNj|k(v)=1and g(v) # 0} is nonempty. (5)

The following theorem is the main analytic ingredient of this paper:

Theorem 1. 1. the multiple zeta function

S= (515 > M(frs) = 3 AU

S
too.msn
mi1>1,....mnp>1

my
converges absolutely in the domain {s € C" | R(s;) > ¢; Vi=1,...,n};
2. there exists g > 0 such that the function

s =(S1,...,8,) = H(f,c;8) := (H(V,s>g(")> M(f;c+s)

vel

has holomorphic continuation to the domain {s € C" | R(s;) > —eg Vi =

1,...,n} and verifies in it the following estimate: for all e > 0,
H(f,ci5) <. [T (1w, s)] + 1)7@ 0z min0Rea)ee,
vel

3. H(f,c;0) is given by the following convergent Euler product:

Yoer9w) m Un
o) =] (1) e B0

p p veNg

Combining our Theorem 1 and La Breteche’s multivariable Tauberian Theorem (i.e
Theorems 1 and 2 of [1] (2001)) yields to the following multivariable mean value
theorem:

Theorem 2. Let f: N® — R, be a nonnegative multivariable multiplicative function
satisfying assumptions of Theorem 1. Set J :={e; | ¢; = 0} where (ey,...,e,) is the
canonical basis of R". Set also p = (3>.,c;9(v)) +#J — Rank (1 U J).

Then, there exist a polynomial Q. of degree at most p and a positive constant fio, > 0
such that

Noo(f5 ) 1= Z flma, ... ,my) = SC”C||1QOO(IH x)+0 (:1:”°”1’“°°) as r — 00.

m=(mq,..., mp ) ENT
[|m||co =max; m; <z

Furthermore, if we assume in addition that the two following assumptions hold:



1. Rank (I UJ)=mn;
2.1 = (1,...,1) is in the interior of the cone generated by I U J; that is 1 €
con* (I UJ) = {3 cruywV | A €(0,00) Vv €eTUJY,
Then, the degree of the polynomial Qw is equal to p = (3.,c; g(V)) +#J —n and the
main term of Noo(f; x) is given by
NOO(fS $) = Cn(f)Kn(fv HHOO) $HCH1(IH x)p + O ((ln $)p_1) as x — oQ,
where C,,(f) :=H(f,c;0) > 0 is defined by the Euler product (6) and

Ko(f |lllso) := lim Z,(I,u,c;z) 2~ eIt (Inz)= > 0, where
T—r00

Z.(I,u,c;x) is the integral (see definition 3) associated to the finite set I, the finite
sequence u = (g(v)),.; and to the vector c.

Remark 1. The existence of the limit K,,(f, ||||oo) follows from the proof of Theorem?2.
If {e1,...,e,} C I UJ, then the two assumptions Rank(IUJ) = n and 1 €
con* (I UJ) clearly hold.

Combining our Theorem 1 and the first author’s multivariable tauberian theorem (i.e
corollary 2 of [2] (2012)) yields to the following multivariable mean value theorem for
Hélder’s norms ||x||g == /|z1|¢+ - + |2,|? (d > 1):

Theorem 3. Let f : N® — R, be a nonnegative multivariable multiplicative function
satisfying assumptions of Theorem 1.
Assume that ¢ = (cq,...,¢,) € (0,00)". Set

1. p:= (Zugg(’/)) N Rcmk(]),

2. I .= {{c,v) ' |v eI} and u:= (u(B))ge,, where u(B) = g(v).

vel(ew) lv=08

Then, there exist a polynomial Q) of degree at most p and a positive constant p > 0
such that

Na(f;z) = Z f(my,...,my,) = IEHCHIQUH x)+0 (:L"”cnl_”) as r — 0o.

m=(mq,..., mp ) ENT

Imllg= §/md+—+md <z

Furthermore, if we assume in addition that Rank(I) =mn and 1 € con* (1), then, the
degree of the polynomial Q) is equal to p = (Zyelg(u)) —n and the main term of
Ny(f;x) is given by

Na(fi2) = Cu( /) Kn(f, lla) &' (In2)? + O ((Inz)*™!)  asz — oo,



where Cy,(f) := H(f,c;0) > 0 is defined by the Euler product (6) above and

Kul£.lla) = <H<u,c>‘g(")> P AR

el o

where Ao(Te, Pi) > 0 is the mized volume constant (see §2.3.3 of [2] (2012)) associated
to the pair Te := (I, u) and the polynomial Py = X¢ + -+ + X¢.
2.3. Applications

We will now give the applications that motivated our general results of section §2.2.

2.3.1. On the average number of cyclic subgroups of the group Zp,, X -+ X L,

Let n € N. For my,...,m, € N denote by ¢,(mi,...,m,) the number of cyclic
subgroups of the group Z,,, X -+ X Zy,,. Set

As we mentioned in the introduction, precise asymptotic for Go(x) was obtained by
W. G. Nowak and L. Té6th in [5] (2014) and improved by L. Téth and W. Zhai in [9]
(2018). The case n = 3 was also investigated by L. T6th and W. Zhai in [10] (2020).
It is natural to conjecture that such a result holds for n > 4. The following result
establish this conjecture in any dimension n.

Corollary 1. Let n € N. There exists a polynomial Q1 of degree 2™ — 1 and p; > 0
such that

Gn(z) = Z Cn(ma,...,my) =2" Qi(lnz) +O(x"™) as 1z — oo.

1<my,..., mp<x

In particular, we have
Gu(z) = Coulcn) Kn(cn, |lo) 2"(Inz)* 7' + O (2"(In2)*" %)  as z— oo,

where

Culen) =[] (1 N 1) 7 2 Cn(py;HL'n;’pyn) >0 (7)

p

p veNy

and
Ku(cn, lllso) := lim Z,(I,u;2) o~ "(Inz) 2"t > 0, where
T—r 00

Z,(I,u,c;x) is the integral (see definition 3) associated to I = {0,1}"\ {0}, to the
sequence u = (u(v)),.,; defined by u(e;) = 2 Vi = 1,...,n and u(v) = 1 Vv €
I\ {ei,...,e,} and to the vector c = 1.



Remark 2. We will compute more explicitly in §7 below the constants C,(c,) and
K, (cn, [loo) for n =2 and n = 3. In particular, we will prove in §7.1 and §7.3 that
Ca(ca) = 2% and Ky(cs, ||||) = 5. Thus, our mains term in the asymptotic of Go(x)
agree with the main term obtained by the convolution method in [5] (2014) by W. G.

Nowak and L. Toth.

2.8.2. Some multivariable averages associated to the LCM function

As we mentioned in the introduction, T. Hilberdink, F. Luca, and L. Téth introduced
in [4] (2020) the three averages (1), (2) and (3) associated to the LCM function and
obtained in this paper asymptotic formulas for Sy(z), Us(x) and V,(z). For n > 3,
they only obtained the following estimates

(lnac)Qn’1 < Sp(z) < (In x)zn’l, (lnav)QL2 < U,(z) < (In x)2n’2,

" < Vy(r) < 2™ (Inx)? 2

and conjectured that asymptotic formulas also exist for these three averages for n > 3.
The following three corollaries prove these conjectures.

Corollary 2. Let n € N. There exists a polynomial Qo of degree 2" — 1 and ps > 0
such that

1
= = 1 —H2 .
Sn(z) 1<m12  Tem(mn, . ma) Q2(lnz) +O0(x ™) as x— o0

In particular, we have

Sn(x) = Cp(80) Kn(sn, |[loc) Inz)* '+ 0 ((Inz)*" %)  as =z — oo,

Culsn) =] ] <1 - 1)2n_1 ( 3 w> >0, (8)

p

where

and
Ku(8n, lllse) := lim Z,,(1,u, c;z) (Inz)~ "t >0, where
T—r 00

Z.(I,u,c;x) is the integral (see definition 3) associated to I = {0,1}" \ {0}, to the

sequence U = (u(v)),; defined by u(v) =1 Vv € I and to the vector c = 0.

Corollary 3. Let n € N\ {1}. There exists a polynomial Q3 of degree 2™ — 2 and
s > 0 such that

1
._ _ e
Un(z) := E e, ) Qs(Inz) +O0(x™) as x— oo.
1<mq,..., mnp<x
ged(mq,..., mp)=1



In particular, we have

Un(2) = Co(un) Kn(tn, || lsc) Im2)* 2+ 0 ((Inz)*?)  as z— o0,

where -
N2 (& (k1) — ke
Co(uy) =TT (1= = WD =W ) oo, 9
=] (1-3) (Z i ) )
and
Ky (tn, |loe) := lim Z,,(I,u, c;z) (Inz) 2" % >0, where
T—>00

Z,(I,u,c;x) is the integral (see definition 3) associated to I ={0,1}"\ {0,1}, to the

sequence U = (u(V)),c; defined by u(v) =1 Vv € I and to the vector ¢ = 0.

Corollary 4. Let n € N. There exists a polynomial ()4 of degree 2" —n — 1 and
g > 0 such that
mi .my,

ORI DR o TN

1<mi,...mp<x

=2" Qu(lnz) + 0" ™) as x— oo.

In particular, we have

Vi(2) = Co(vn) Ky (n, || |oo) 2" (Inz)* "'+ 0 (2" (Inz)* ™?)  as x— oo,

Cr(vy) := H (1 — 1) < ( M#) > 0, (10)

Ky (v, |lloo) := lim Z,,(I,u,c;2) 2 "(Inx) 2" > 0, where
T—00

where

and

Z.(I,u,c;x) is the integral (see definition 3) associated to I = {0,1}" \ {0}, to the

sequence U = (u(v)),; defined by u(v) =1 Vv € I and to the vector c = 1.

Remark 3. The constants C,(s,), Cn(u,) and C,(v,) are equal. We will compute
more explicitly in sections §7.2, §7.4, §7.5 and §7.6 below the constants C,(.) and
K,.( |lllso) for m =2 and n = 3. More precisely, we will prove that

1. 02(82) == CQ(UQ) == CQ(UQ) == 7% and
Cofoa) =TT, (1 - % + 3 = % + )
2. Ka(s2, [llloe) = 3, Ka(uz, o) = 1 and Ka(va, [|[lec) = 1;

3. Ks(ss, ) = 5365- Ka(us, lllloc) = 155 and Ks(vs, |lllc) = 75

33667 480 16 -

$
—~
»
w
~—
I
§
—~
<
w
~—
I

In particular, our mains terms in the asymptotic of Sy(x), Us(x) and Va(x) agree with
those obtained by the convolution method in [4] (2020) by T. Hilberdink, F. Luca, and
L. Toth.



2.3.3. Multivariable averages with other norms

The following two results give analogues of corollaries 1 and 4 for some other choices
of norms.

Corollary 5. Letn € N and d > 1. There exists a polynomial Q5 of degree 2" — 1
and ps > 0 such that

Gpa(z) == Z cn(imy,...,my) =2" Qs(Inx)+0(x" ") as x — 0.
m=(my,..., mp ) ENT

Imllg= §/md++md <o

Moreover, if we set I := {||v|'v; v € {0,1}"\ {0}} and u = (w(B))ge; where
u(lB)=21if B €{e,...,e,} and u(B) = 1 otherwise, then

Gra(z) = Cn(cn) Kn(cn, |la) 2"(Inz)* '+ O (z"(Inz)*"7?)  as z — oo,

where Cy,(¢,,) > 0 is given by (7) and

y
Ko(en ) (H’f )d Ao(irlfdgo?

where Ao(T, Py) is the mived volume constant (see §2.3.3 of [2] (2012)) associated to
the pair T = (I,u) and the polynomial Py = X+ --- + X2,

Corollary 6. Letn € N and d > 1. There exists a polynomial Qg of degree 2™ —n —1
and pe > 0 such that

Via(z) := Z M- e Qs(Inz)+0(2"#%)  as x — oo.

lem(myq, ..., my,)

Moreover, if we set I = {Ivli'v; v e {0,1}"\ {0}} and u = (u(B))ge where
uw(B) =1VB eI, then

Via(z) = Co(vy) Kp(vn, [|[la) 2"(Inz)* '+ O (2" (Inz)* ™?)  as x— oo,

where Cy,(vy,) > 0 is given by (10) and

d2n7n A()(T Pd)
K, ) (Hk ) ),

where Ao(T, Py) is the mived volume constant (see §2.3.3 of [2] (2012)) associated to
the pair T = (I,u) and the polynomial Py = X{ + -+ + X2,

10



Remark 4. The constants C,(.), are independent on the choice of the norm. The
constants K,(.) depend on the choice of the norm. We will compute more explicitly
in §7.7 below the constants K, (cp, |||la) and K, (vn, ||||a) for n =2 and n = 3. More
precisely, we will prove that

1 Kalen ) = gy and Koo ) = 5 rel
31T (1/d)’ T (1/d)’
2 Ksles,llla) = 5550 2 1 a7 Ks(vs, ||[la) = TETGD

3. Proof of Theorem 1

Let f: N" — R be a multiplicative function in the class C(g, &, c, ¢).
Define for v € Njj and p prime V(p,v) by the formula

f, . pm) = (gw) + V(p,v)) plor ) (11)

Since (g, k,c,d) is a data, point 1 of definition 1 and assumption (4) can then be
written in the following more convenient equivalent form:

Ve >0, gv) <. el and  V(p,v) <. e p=, (12)

uniformly in v € Nj and in p prime number.

Moreover, point 2 of definition 1 implies that there exists 5 > 0 such that
k(v) > max (1, 5||v]:) Vv eNj\{0}. (13)

3.1. Proof of point 1 of Theorem 1

Let s = (s1,...,8,) € C" be such that o, = R(s;) > Vi=1,...,n

Set o0 = (01,...,0,) and n = %minizl 77777 n(oi —¢;) > 0.

So, we have o; > ¢; + 2n Vi and (o,v) > (c,v) + 2n|jv||; Yv € Nj. Choose ¢ > 0
small enough such that e < 27. It follows then from (11) and (12) that we have for
any prime number p,

(P, )| eVl plew) =)
Z Z p(s,u) - Z Z (o,v) <<‘EZ Z (c,v +27)||1/H1
P vzl P vzl P vzl
eclvl eslvi
<e Z Z +2n||l'||1 Z pl Z p??lll/Hl
P HV||1>1 llv]l1=1
vl 1
« Xy ( R
li>1 p

11



The multiplicativity of f implies then that s — M(f;s) converges absolutely and

that
fmla- H pr s, D)
Z s s v) ’ (14)
meN”© S p veNy
This ends the proof of point 1 of Theorem 1. O

3.2. Two useful lemmas

Recall that I = I(k,g) :={v € Nj | k(v) =1 and ¢g(v) # 0} is an nonempty set.
Forallt e R, set Uy :=={s € C" |o; =R(s;) >t Vi=1,...,n}.
We need the following two lemmas:

Lemma 1. There exists €1,m1 > 0 such that for any prime number p, the function

, f, ., p") 9(v)
S = Rp(s) = Z p(c+s v - pl—l—(l/,S)
vel

[vlli>1

s holomorphic in the domain U_., and verifies in it the estimate
Ry(s) < p™ '™  uniformly in p.

Lemma 2. Set 5 = inf,¢; ri”l and ny = % Then, for any prime number p, the
function

Ly 9(v)
S = LP<S) 3 (H (1 B p1+<u,s>> ) — 1+ < pl—‘r(u,s)
vel vel

s holomorphic in the domain U_., and verifies in it the estimate

Ly(s) < p™ '™  uniformly in p.

3.2.1. Proof of Lemma 1
Fix § > 0 such that (13) holds. Fix also a positive integer N verifying N >
max | 447", max ||v||;

vel

Identity (11) implies that for p prime number and s € Uy = {s € C" | 0; > 0 Vi}, we
have

R,(s) = RIIJ(S) + Rf)(s), where (15)

V(p,v) g(v) g(v + V p V)

1 _ ’ "/ 2 ’

Rys)= ) et D )+ ws) and  Ryfs)= > '
I

pn(u
1<l <N v lwlli>N
1<|vll <N
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To prove Lemma 1 it suffices to verify that both s — R)(s) and s — R2(s) satisfy its
conclusions.

CLAIM 1: s — R)(s) satisfies the conclusions of Lemma 1.

Proof of CLAIM 1: It’s clear that s — R](s) is holomorphic in the whole space
Ccr.

Let € > 0. It follows from (12) and (13) that for p prime number and s € U_. = {s €
C" | 0; > —e Vi}, we have

Ry(s) < ) pirwar T > pn<u>+<u,a><<zplfsnuu1+ 2. eI

1<|lv]1 <N VeI vel v@l, g(v)#0
- - 1<|lv]l1 <N 1<|lv|1 <N

(16)
Since k(v) > 1if v € TU{0} and g(v) # 0, it is clear that we can choose € > 0 small
enough such that

fy = mi?(5—5||1/||1) >0 and po = min{k(w)—¢||v|i—1|1 < ||v|i <N, v &I and g(v) # 0} > 0.
ve

Set p = min(yu, p2) > 0. It follows then from (16) that we have Rl(s) < p~'7#
uniformly in p prime number and in s € U_.. This ends the proof of CLAIM 1. [

CLAIM 2: s — RZ(s) satisfies the conclusions of Lemma 1.
Proof of CLAIM 2: Fix ¢ > 0 such that e < 2%/4. Assumptions (12) and (13)
imply that we have uniformly in p prime number and in s € U_g/,

g(y) _|_ V(p’ V) 65HVH1 65HVH1 1 65”1’”1
2 < Y e < 2 « =3 o
PR e B o) = o e Tay Bl
sy P ey P sy P2t Ay 2l
1 ea ||V||1 1 1
<Le BN Z (_E) <e BN < Z?
P sy N21 pt

We deduce that s — R2(s) is holomorphic in U_g/; and verifies the estimates R2(s) <
p~? uniformly in p prime number and s € U_g5. This ends the proof of CLAIM 2
and also ends the proof of Lemma 1. O

3.3. Proof of Lemma 2

It is clear that s — L,(s) is holomorphic in C" for any p.

Set now ey = inf,¢; m. It follows that for s € U_,, andv € I, 1 + (v,0) >
1-— 52”1/”1 Z 3/4

Newton Binomial theorem implies then that we have uniformly in s € U_., and in p

13



prime number,

1\ g(v)
|Ly(s)] = (H (1 - 71+<u,s>> ) -1+ ( +w,9)
vel p vel p

_1\kw (9(¥)
_ Z [le(=1) (k,,) < Z 1

pZyeI ku(14+(v,s)) pZ,,g ku(14+(v,0))
0<ky<g(v) Yrel, 0<ky<g(v) Yrel,

ZVGI kv 2>2 EVGI ky >2

1 1
< Z p% ZVGI kv < p3/2.

0<ky<g(v) Vvel,
ZVEI ky 22

This ends the proof of Lemma 2.

3.8.1. Proof of parts 2 and 3 of Theorem 1
Define the function s = (s1,...,s,) — E(f;s) by

aﬁsw=<kar+@s»ﬂwv M(fic+s). (17)

vel

Part 1 of Theorem 1 implies then that s — £(f;s) converges absolutely in the domain
Uy ={s € C" | g; > 0 Vi}. Moreover, The multiplicativity of f imply that for all
S € UQI

E(f;s) = [[&(fis), where (18)

1 g(v) f(pV17“_7an)
gp(f’ S) = H (1 - p1+<u,s>> Z p<V70+5>

vel veNg
We will now prove the following needed lemma:
Lemma 3. There exists g > 0 such that the Euler product s — E(f;s) =[], &,(f;s)

converges absolutely and defines a bounded holomorphic function in the domain
Uy =1{s€C"|o;,>—¢Vi=1,...,n}.

Proof of Lemma 3:
We will use in the sequel of this proof notation of Lemmas 1 and 2. Lemmas 1 and
2 imply that for any prime p and any s € Uy,

(v) (v)
5p<f§s) = (1 - (VGI %) + Lp(5>> (1 + (VGI p‘lg+<u7s>> + Rp<s)>

= 1—A,(s)* + B,(s) + Cy(s), where (19)
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Ay(8) = 3 L B(5) 1= (1= A4,(5) Byls) and Cyls) = Ly(s) (1-+ A4,(5) + Ry (5).

Let €1,€9,m1,1n2 > 0 the positive constants defined in Lemmas 1 and 2.

Set €9 = min(ey,e9) > 0 and 79 = min(ny, 72) = min(n;,1/2) > 0. Lemmas 1 and 2
imply that the three function A,, B, and C, are holomorphic in U_., and that we
have uniformly in p prime number and s € U_,, the following estimates:

1 1 1
L Ay(s) <3 S = > Pl S g

vel vel

1
2 .
2. A(s)" < T < R

3. B 1 ! ! L
- By(s) < {1+ p3/4 ) plim < pltmo’

1 1 1 1
4. Cp(S) <<W (1+W+W) <<p1+770‘

It follows that for any prime number p, the function s — &,(f;s) —1 is holomorphic in
U_., and verifies £,(f;s)—1 < pEEe

We deduce that the Euler product s — &£(f;s) = [],&,(f;s) converges absolutely
and defines a bounded holomorphic function in U_.,. This ends the proof of Lemma
3. O

uniformly in s € U_, and in the prime number p.

We are now ready to prove points 2 and 3 of Theorem 1. Combining part 1 of Theorem
1, (17) and (18) implies that for s € Uy,

H(f,cis) = (H<u,s>g<">> M(fic+s) = (H<<u,s>¢<1+<u,s>>>g<">) E(f:9).

vel vel
(20)
Part 2 of Theorem 1 follows then from Lemma 3 and the following two classical
properties of Riemann zeta function: s+ s¢(1 4 s) is holomorphic in C and verifies
in the half-plane {R(s) > —1} the estimate s ((1 + s) <. (1 + |s|)t-2minORE)+e,
Ve > 0.
Moreover, since sC(1 + s)|s=o = 1, we deduce from (20) and (18) that

> g(v) v 1z
O) — £(F-0) — L\ =t [, p")
Hir0) = (0~ (1-1) > s
p veNg
This ends the proof of point 3 and also the proof of Theorem 1. O]
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4. Proofs of Theorems 2 and 3

4.1. Proof of Theorem 2

We will now explain how the combination of our Theorem 1 and La Breteche’s mul-
tivariable Tauberian Theorem (i.e Theorems 1 and 2 of [1] (2001)) yields to our
Theorem 2. Our notations are different from La Breteche’s notations. To simplify
the exposition, we will first recall La Breteche’s Tauberian Theorem 1 and the part
we use of his Tauberian Theorem 2 by using our notations:

Theorem A: (Theorem 1 of [1] (2001)):

Let f: N* — R, be a nonnegative function and F the associated Dirichlet’s series

defined by

F(s)=Flsi,..o, o) = Y. f(mll"'.“"m").

S s
m mom
mi,...,mp>1 1 n

Denote by LR (C) the set of C—linear forms from C" to C that are nonnegative on
(Ry)".
We assume that there exists ¢ = (cq,...,¢,) € (Ry)™ such that:

1. F(s) converges absolutely for s € C" such that R(s;) > ¢; Yi=1,...,n;

2. There exist a finite family L = (Z(i))1<z<q of nonzero elements of LR} (C), a

finite family (h(i))lgigq, of elements of LR (C) and &1, 92,93 > 0 such that the
function H defined by

H(s) = F(c+s) HM(S)

has holomorphic continuation to the domain
D(61,03) :=={s € C" | R (£D(s)) > =6, Vi=1,...,q and R (h)(s)) > =03 Vi=1,...,q}

and verifies the estimate: fore, &’ > 0 we have uniformly ins € D(d —&’,03—¢’)

q

HEs) < T (8 () |+ 1) 7™ OO (14 (1860 + -+ + ().

i=1

Set J =J(c)={j€{l,...,n}|¢c; =0}. Denote by w = #J the cardinality of the
set J and by j; < --- < j its elements in increasing order. Define the w linear forms
(@) (1 <i < w) by 97(s) = €7 (s) = s5,.

Then, for any B = (B1,...,0.) € (0,00)", there exist a polynomial Qg € R[X]| of
degree at most ¢ +w — Rank {E(l), e ,E(“w)} and 0 > 0 such that

ST S fm.my) = 9PQg(log ) + 0P ) as x — oo,

1<my Smﬁl 1§mn§$ﬁn

16



Theorem B: (parts (ii) and (iv) from Theorem 2 of [1] (2001)):
Let f:N" — R, be a function satisfying assumptions of Theorem A.
Let B = (p1,...,0n) € (0,00)". Set B=73"", pief € LR, (C).

e (ii) If the Dirichlet’s series I satisfies the additional two assumptions:
(C1) There exists a function G such H(s) = G ((W(s),..., 04T (s)).
(C2) B € Vect ({6(’“) |k=1,...,q+ w}) and there is no subfamily L' of Ly :=
(é(k))lgqu-i—w such that L' # Ly, B € Vect(L') and #L' — Rank(L') = #Loy —
Rank(Ly).

Then, the polynomial Qg satisfies the relation
Qplogz) = H(0)z~ A Tg(zx) + O ((logz)”'),

where p == q+w — Rank {{W, ... (4T} and

L dyl c. dyq
Ip(z) := /,45(36) e 1-(o)’

=1 J1
with 2
(i)e- . .
Ap(x) = {y € [1,00)0 | [J i @ <% ¥j=1,...,n}.

=1

e (iv) If Rank {5(1), o ,€(q+w)} =n, H(0) # 0 and B € con* ({E(l), . ,E(q+w)}),
then deg(Qg) = p=q+w —n.

Remark : If assumptions of point (iv) hold, then assumptions of the point (ii) also
clearly hold.

Proof of Theorem 2:

Let f : N* — R, be a multivariable multiplicative function. We assume that f
belongs to the class C(g, k, c,d) associated to the data (g, k,c,d) (see definitions 1
and 2). We assume also that the finite set

I'=1(k,g):={veNj|k(v)=1and g(v) # 0} is nonempty.

We denote by v!, ..., v" the elements of I where r = #1,
and define the finite sequence g, (0 < k <) by

k
go=0 and qk:Zg(uj) Vk=1,...,r.

=1
We define the linear forms ¢ (1 <i < ¢,) by

e(i)(s) ={Whs) ifgi<i<qgandl<k<r

17



We define also the set J = J(c) = {j € {1,...,n} | ¢; = 0}. We denote by w = #J
the cardinality of the set J and by j; < --- < j,, its elements in increasing order.
We define also the w linear forms @) (1 <i < w) by

(1 (s) =€} (s) =55, (1<i<w).

By using notation of our Theorem 1 it’s easy to see that the Dirichlet’s series associ-
ated to f is

od " :
H(s) = <1_1 E(i)(s)) F(c+s) = (H(u,s>g(”)> M(f;c+s)=H(f, c;s).

Our Theorem 1 implies then that F'(s) converges absolutely if %(s;) > ¢;Vi=1,...,n
and that there exists g > 0 such that the function s — H(s) has holomorphic
continuation to the domain {s € C" | R(s;) > —¢¢ Vi = 1,...,n} and verifies in it
the following estimate: for all € > 0,

H(f,es) <. [] (|(w,s)] + )7 (73 min@R(wsh)) 4
vel

Fori € {1,...,n} set h)(s) = s, for all s = (s1,...,5,) € C". Set also &; = &3 = &,
q = ¢, and ¢’ = n. It follows then that s — H(s) has holomorphic continuation to
the domain

D(61,63) :=={s € C" | R (£(s)) > —6;Vi=1,...,gand R (h)(s)) > =63 Vi=1,...,¢}
and verifies the estimate: for £,¢’ > 0 we have uniformly in s € D(§; — €', 95 — ')

oS (14 (13 s0) -+ 4+ 18(s))7),

H(s) < JT(1S (A7) [+1)

where d; = 1/2. Thus, all the assumptions of Theorem A above hold. By applying
Theorem A with 3 =1 = (1,...,1), we deduce that there exist a polynomial ¢y of
degree at most

p =g +w— Rank {¢V ... (@t} = <Z g(u)> + #J — Rank (I U J)

vel

and a positive constant 1 > 0 such that

Noo(fi2) = Z fma,...,my,) = zlhQ,(Inz)+0 (x”cHl_”) as T — 00.

m=(mq,..., mp ) ENT
[|m||co =max; m; <z

This ends the proof of the first part of our Theorem 2.

Assume now in addition that the two following assumptions hold:

18



1. Rank (I UJ)=mn;

2.1 = (1,...,1) is in the interior of the cone generated by I U J; that is 1 €
con* (I UJ):={> cuywV | A €(0,00) Vv € TUJ},

By duality, we deduce that Rank {¢1), ... (7))} = pand 1* € con* ({¢(W), ... (T}
Moreover since f is nonegative, our Theorem 1 implies that

Yver ) " Vn
(o) = w70 =[] (1-1) Rl

p p veNg

It follows that assumptions of point (iv) (and therefore assumptions of point (ii)) of
Theorem B above hold. Theorem B implies then that

deg(Q1) = p = <Z g(l/)) +#J—n

vel
and
Q1(logz) = H(O)x‘”"”lL(m) + 0 ((log x)”_l) , (21)
where p J
Y1 - - AYq,
Il (ZL‘) = / _qr 176(;)1(0) )
Ai(z) i=1 yz

with

qr

) (e; .
Hyf () <z Vj=1,...,n}
i=1
By using notations of Definition 3, it’s easy to see that

Ti(z) =Z,(I,u,c;z) and  Ap(z) = A(l,u;2),

Ai(x) :={y € [1,00)"

where u is the sequence u = (g(v)),;-

Since the degree of the polynomial ()1 is equal to p = (Zyel g(v)) + #J — n, there
exists a positive constant C' > 0 such that Q;(z) = Cx? + O (z*~1) as * — oo and
(21) implies that

H(0)z~ <7, (2) = C(log x)* + O ((log z)* ™) .
It follows that
C =H(0) a:lggo g lel(log )7 Ty (x) = H(0) 9}520 a7l (log 2) = Z,,(I,u, c; ).
We deduce that the main term of N (f;x) is given by
Noo(f;2) = Co( KL, [lloo) 2'I (Inz)? + O ((Inz)*™)  as x — oo,
where C,,(f) := H(0) = H(f,c;0) > 0 is defined by the Euler product (6) and
K. (f, llleo) := g}LrgloIn(I, u,c;z) Il (Ing)=" > 0.

This ends the proof of Theorem 2. O
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4.2. Proof of Theorem 3

Let f : N — R be a multivariable multiplicative function. We assume that f belongs
to the class C(g, k, ¢, 0) associated to the data (g, ,c,d) (see definitions 1 and 2).
We assume also that the finite set

I'=1(k,g):={veNy|k(v)=1and g(v) # 0} is nonempty.
We define the set I, := { gV | v € I} and the sequence u := (u(8))¢;, where
u(B) = Z g(v) forall pBel.
vel, ﬁu:ﬁ

We Define also the pair 7; := (I, u).
Theorem 1 implies that

soM(fs) = Y L)

my' ... msn
m1>1,...,mp>1 n

converges absolutely in the domain {s € C" | R(s;) > ¢; Vi = 1,...,n}; and that
there exists £g > 0 such that the function

s— H(f;Tss) = [ [](8,s)" )M(f c+s)

Belc

= )( > M(f;c+s)

= ([ C>_g(")> H(f c;8) (22)

vel

has holomorphic continuation to the domain {s € C" | R(s;) > —¢o Vi = 1,...,n}
and verifies in it the following estimate: for all € > 0,

H(f, Te;s) < [ (Iw,s) + 1)) (1= 3 min(OR((w.s)) 4
vel

We deduce that f is of finite type with T, := (I.,u) as a regularizing pair (see Defi-
nition 2 of [2] (2012)). It follows then from Corollary 2 of [2] (2012) that there exist
a polynomial @) of degree at most

p = (me) Rank(I (Z g(v > — Rank(I)

,Be[c vel
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and a positive constant p > 0 such that

Na(f;x) = Z f(my,...,my,) = l’HCHIQ(ln z)+0 (x”clllf“) as r — 00.

This ends the proof of part 1 of Theorem 3.
Assume now in addition that Rank(l) =n and 1 € con* (I). It follows that

1. Rank(l.) = n and it’s clear then that there exists a function holomorphic in a
tubular neighborhood of 0 such that H(f, 7c;s) = K (((8,s))ger.);

2. 1€ con*(1).

Therefore, the additional assumptions 1 and 2 of Theorem 3 of [2] (2012) are satisfied
and the second part of Corollary 2 of [2] (2012) implies then that

Na(f;z) = Co(f, Py) Il (Inz)? + O (lnz)*") asz — oo,

H(f, To: 0)dP+Y A(T, P

where Co(f, By) = (f, Te; ﬁ ) o(Te, Pa) and Ao(7e, P;) > 0 is the mixed vol-
C|l1 p:

ume constant (see §2.3.3 of [2] (2012)) associated to the pair T. := (I¢,u) and the

polynomial Py = X+ --- + X2

Combining (22) and the expression of H(f, c;0) given by theorem 1 implies that

H(f, T2 0) = <H<u,c>g<">) Culf).

vel

where C,(f) := H(f,c;0) > 0 is defined by the Euler product (6). Moreover, if we

set
Ko(f; lllla) = (H<u,c>—g<v>> @ Ao(Te, F)

el ¢

then the the constant Cy(f, P;) is positive and is given by

Co(fa Pd) = Cn(f) Kn(f7 HHd) > 0.

In particular, the degree of the polynomial @ is equal to p = (Zyel g(l/)) —n. This
ends the proof of Theorem 3. O

5. Proof of Corollary 1

Define the function ¢; : Nj — Ny by

(1) = 1 if 3 # j € {1,...,n} such that v; = v; = ||[V||0;
5 |V]|oo —max ({v; |i=1,....,n} \ {||[¥|l}) + 1 otherwise,
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where ||V]|o = max;—1 V.
We will first prove the following needed lemma.

Lemma 4. We have
(P, p") = (V) pHVHrIIVIIDo +0 ((1 + Hy”l)pIIVIIrHVIImfl)

uniformly in v = (v1,...,v,) € Ni and p prime number.

Proof of Lemma 4:

In the proof of this lemma we will use the notations: a A b = min(a,b) and a Vb =
max(a, b).

First we recall the following formula proved by Téth in [8] (2012):

v v (p(pfl) e (p(pfn>
cn(pl,...7pn): |
OQ;UZ. 90 (pmax{el“"’gn})
i€[1,n]

(23)

where ¢ is the Euler’s totient function.
If n =1, then ¢;(p”*) = 1 + v; and the lemma holds.
Letn>2. Set k=n—1¢N.
Let p be a prime number and v = (v4,...,1,) € Nj. Without loss of generality we
can assume that
v < g < .- <y,

It follows that

v v (™) - p(P™)
R L D D R D DI e P e
0<ti<v; 0<ti<v; v P
i€l,k+1] i€1,k+1]
L1V NV <lpyq LVl >l
Vi1 el Zk: €1V"'\/£k—1
- VL AU AL e(p™) - p(p™) ‘
] p ' T Z © (pmax{él,...,fk}) Z SO(p k+1)
£=0 0<4; <y L1 1=0
i€[[1,k]
V-V >1
vp—1
— (ka — e+ 1>p1/1+---+z/k + Z plll/\€+---+uk/\f
/=0

n Z o(p™) - p(p) 01V —1
") (pmax{h,...,fk})

0<4;<y;
1€[1,K]
V>

NS e Al AL Sp(pel) T Sp(pgk) 1
— _ 1)prrt vk V1 Uk —
(Vkp1 — v+ 1)p +>  p +0) | -
£=0 0<6;<v;
1€[1,k]
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l/k—l

DI VLAl N prte — 1
= (Vg1 — v + 1)p” k‘i‘z P MR

=0 p—1
I/k—l I/1+-~~+Vk—1
= (Vgy1 — v + L)p T 4 Z P A Z P’
=0 =0
Thus, for v = (v1,...,v,,) € Nj such that 11 <y <--- <, we have
vp—1—1 vit+otrp—1—1
Cn(pyl, o ’pun) _ (Vn —v, 1+ 1)p1/1+~n+yn_1 + Z pV1/\£+...+yn_2/\£p£+ Z pZ
=0 =0
(24)
We deduce that
0 S Cn(pl/17 AR 7p,/n) - (I/n - anl + ]‘>pHV||1_HVHOO
vp—1
< Pty (e
=0
< (Vi F vy F 20)p T <9y plPli=lvlleo=1
This ends the proof of Lemma 4. O

We will now use Lemma 4 to prove Corollary 1.

It’s clear that ¢, : (my,...,my,) — c,(my, ..., m,) is a multiplicative function. More-
over, Lemma 4 implies that ¢, belongs to the class C(g, k, ¢, ) (see definition 2), where
g=g,c=1=(1,...,1),6 = 1 and & is the function defined by x(v) = max,—1__, v;
Vv € Njj. Furthermore, if we denote by (ey,...,e,) the canonical basis of R", then

I=1(k,g):={veNj|k(v)=1and g(v) # 0} ={0,1}"\ {0}.

Since J = {e; | ¢, = 0} = 0 and ey,...,e, € I = I U J, it follows that the two
assumptions Rank(I U J) =n and 1 € con* (I U J) hold. Set

pi= <Zg(l/)> +#J—n= (Zg(u)) —n.
vel vel
Since g(e;) =2Vi=1,...,nand g(v) =1Vv € I\ {ey,...,e,}, we have
p=2n+(#I—n)—n=#I=2"—1.

Theorem 2 implies then that there exist a polynomial ); of degree p and a positive
constant gy > 0 such that

Gn(z) = Z cn(ma,...,my) =2"Qi(Inz) + O (2" ")  asz — oo,

1<mi,...mnp<x

= Culen)Knlcn, ||loo) 2"(Inz)* ' + O (2"(Inz)*" %) as  x — oo,
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and
Ku(cn, lllso) := lim Z,,(I,u; ) 27 "(Inz)">"** > 0, where
T—r 00

Z,(I,u,c;z) is the integral (see definition 3) associated to the set I = {0,1}" \ {0}
and to the sequence u = (u(v)),; defined by u(e;) =2 Vi =1,...,n and u(v) =1
Vv € I\ {e,...,e,} and to the vector ¢ = 1. This ends the proof of corollary 1. [

6. Proof of Corollaries 2, 3, 4, 5 and 6

6.1. Proof of Corollary 2
Let s, : N — R, be the function defined by

1
Sp(my,...,my,) = V(my,...,my,) € N",
n(m ) lem(my, ..., my) (- )
It clear that the function s, is multiplicative and that for v = (4, ...,v,) € Nj and
p prime number, we have s,(p™,...,p"™") = p~ "¥i=tn¥_ Thus, s, belongs to the

class C(g, k,c, ) (see definition 2), where g =1, ¢ =0 = (0,...,0), 6 =1 and & is
the function defined by k(v) = max;—;

.....

Moreover, we have

I'=1(k,9) = {r e Ng | k(v) = L and g(v) # 0} = {0,1}" \ {0}
and J = {e; | ¢, =0} = {ey,...,e,}. It follows that the two assumptions Rank(l U

J) = mnand 1 € con* (IUJ) hold. Moreover, p := (3 ,;9(W)) + #J —n =
(zuel g(v)) =2"-1

Theorem 2 implies then that there exist a polynomial )5 of degree p = 2" — 1 and a
positive constant ps > 0 such that

Sp(x) = Z ! =Q@Q:(lnz) +O(x™") as x— oo,

lem(my, ..., my)

1<miy,...,mn<

= Cu($0)Kn(sn, ||lo) In2)* "+ 0 ((Inz)* ) as x— oo,

where

1 2n—1 1
Calsn) = Hlca,c;0)=]] <1 - 5) EN: Pl
p veNgy

) ()

k=0
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and K, (s, |||loc) := lim Z,,(1,u, c;z) (Inz) 2" >0, where
T—00
Z,(I,u,c;x) is the integral (see definition 3) associated to I = {0,1}" \ {0}, to the
sequence u = (u(v)),; defined by u(rv) = 1 Vv € I and to the vector ¢ = 0. This
ends the proof of corollary 2. [
6.2. Proof of Corollary 3

Let n € N\ {1}. Let u, : N® — R, be the function defined by

1
Up(My,...,my) = if gcd(my,...,my,) =1 and u,(mq,...,m,) =0 otherwise.
(m1 ) lem(myq,...,my,) ged(m: ) (m1 )
It is clear that the function u, is multiplicative and that for v = (v4,...,v,) € Nj
and p prime number, we have
Up (P, ..., p) = p~ =L Vi fﬁlin v; = 0 and u,(p"™,...,p"™) = 0 otherwise.

Thus, u,, belongs to the class C(g, K, c,d) (see definition 2), where ¢ = 0 = (0,...,0),
d = 1, k is the function defined by k(v) = max,—1__, v; Yv € N and g is the function
defined by

-----

g(v)=1if min v; =0 and g(rv) = 0 otherwise.

=1,...,
Thus, we have I = I(kr,g) :={v € Nj | k(v) =1 and g(v) # 0} ={0,1}"\ {0,1}
and J ={e; | ¢; =0} = {ey,...,e,}. It follows that the two assumptions Rank(I U
J) = nand 1 € con* (IUJ) hold. Moreover, p := (>, ., 9(V)) + #J —n =
(X e 9w)) =2 —2.
Theorem 2 implies then that there exist a polynomial ()3 of degree 2™ — 2 ans g > 0
such that

Up(z) = Z ! =Qs(lnz)+O0(x™) as x— o0

lem(my, ..., my)

= Co(un) Kn(tn, lloc) Inz)* >+ 0 ((Inz)* %) as z — oo,

where

1\ 22 1
Coluy) = ’H(cn,c;O):H(l—Z;> > Pl
b mmz::,e.%\.]fy); v;=0
N2 & (k1) (k- 1) — 2k
SI) (R
" p k=1 P
DV (S k) b
ST ()
p k=0



and K, (tn, |||loe) := lim Z,,(I,u, c;z) (Inz)~2" "2 > 0, where
T—r00

Z,(I,u,c;x) is the integral (see definition 3) associated to I = {0,1}"\ {0, 1}, to the
sequence u = (u(v)),; defined by u(rv) = 1 Vv € I and to the vector ¢ = 0. This
ends the proof of corollary 3. ]
6.3. Proof of Corollary 4

Let v, : N* — R, be the function defined by

my...Mpy
Up(my,...,my,) = Y(mq,...,m,) € N",
(m1 ) lem(myq, ..., my) (m1 )
It is clear that the function f is multiplicative and that for v = (v,...,1,) € N} and
p prime number, we have
Un(pm’ o ’an) _ pHVHl—maXi:l ..... nli

Thus, v, belongs to the class C(g, k,c,0) (see definition 2), where g =1, ¢ = 1 =
(1,...,1),0 =1 and & is the function defined by x(v) = max;—; _,v; Yv € Nj.

.....

Moreover, we have

I'=1(k,g) :={v eNg[r(v) =1and g(v) # 0} = {0,1}" \ {0}

and J = {e; | ¢; = 0} = 0. Tt follows that the two assumptions Rank(I U J) = n and
1 € con* (I U J) hold. Moreover, p:= (3> ,c,9(w)) +#J —n=2"—1—n.
Theorem 2 implies then that there exist a polynomial Q)4 of degree p = 2" —n — 1
and a positive constant p, > 0 such that

Vi(z) = Z M _ 2"Qu(lnx) +O(z"") as 1z — o0

lem(my, .. my)

= Co(vn)Kp(n, |||loc) 2" (Inz)* "'+ 0 (2" (Inz)*"7?) as z— oo,

where
1\ 1
Cuwn) = Hewa0) =TI (1-3) [ X ue
p veNy
NS (k4 1) — kn
e
- p =0 p
and K, (v, ||[loo) := lim Z,(1,u,c;x) o~ "(Inz) 2" "+ > 0, where
T—>00

Z,(I,u,c;x) is the integral (see definition 3) associated to I = {0,1}" \ {0}, to the
sequence u = (u(v)),; defined by u(rv) = 1 Vv € I and to the vector ¢ = 1. This
ends the proof of corollary 4. O]
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6.4. Proof of Corollaries 5 and 6

Proof of corollary 5 (resp. corollary 6) is similar to the proof of corollary 1 (resp. corol-
lary 4) by using Theorem 3 instead of Theorem 2 and the identity [T, c o 1y o2 V[t =

[T, k).

7. Explicit computations of the constants C,,(.) and K,(.,.) in dimensions
n=2andn =3

We will use the software WX Maxima to compute some iterated integrals below.

7.1. Computation of Cy(cy) in corollaries 1 and 5
The identity (24) implies that for v € N2 such that 0 < vy < v, we have

pV1+1 -1

Vo2 — o — 1)p™t 2
ca(p™,p”?) = (v — 11 — 1)p” + -

We deduce by symmetry that

ey T (1-1) [ o) - 52 o)

P v22>01v1=0 11>0

:El(p; ) [259(—]31;50121>>‘pg?—+1>?]:H(l‘]%):@?z) -

P

7.2. Computation of Cy(.) (n = 2,3) in corollaries 2, 3, 4 and 6

Constants C,,(.) in corollaries 2, 3, 4 and 6 are equal. We will denote them by C), in

this subsection.
e In dimension n = 2, we have

) (55) W )

P k>0 p

e In dimension n = 3, we have

B 1\’ 32 +3k+1\ 1 (=17 (3pp+1) 3p P
Cg_H(l__) (Z Pt )_H P’ ((p—1)3+(p—1)2+p—1)

p p p

D' +4p+1) L9, 169 1
-1l % Uyt
p p
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7.8. Computation of K,(cn,|||l) (n = 2,3) in corollary 1

e In dimension n = 2, we have: I = {ej,ez,€1 + e}, u=(2,2,1) and c = 1. Tt
follows from definition 3 that

2
I,(I,u,c;x) = / ys dy = / y5< / dyldy2> dys

y€[1,+oo[5 y5€[1,x[ y1,y2€[1’+00[
Y1y2ys < ny2<x/ys
Y3Yyays<x
2
A xr xXr
= / Ys (—ln (—) ——+1) dys
Ys Ys Ys
ys€[1,z]
1 2 1

= §9€2 In®(z) — 2% In*(x) + 22 In(z) — 2z In(z) + % — 5

which implies that

1
Kafe, ) == Jim Zo(7,w, ;) () = 1
Tr—r00

e In dimension n = 3: We have I = {e;,es,e3,€1 +€2,e; +€3,e5 + €3, + e, + ez},
u=(2,221,1,1,1) and c = 1. It follows from definition 3 that

. _ 2 < 2
I3(I,u,c;v) = / YrYsYoyio dY = / YsYoYio / yr dy.
y€[1,4+o00['0 Y8,Y9,410€[1,+00[ Y1,-,y7€[1,+00]
Y1Y2Y7YsY10 ST Y8Y9Y10<T Yy1y2y7<2/ysy1o0
Y3Y4Y7Yoy10 <T Y3Yay7<x/yoy1o0
Y5Y6YsY9Y10 <T Y5Y6 <T/ysyoy1o0

By using the software WX Maxima we obtain that

4 21 11 1
! ! + —In’(z) — — In*(z) + = In®(2)

R (AR O T
Ll wmen) =z (16128n(x) 520 " ) axg ) T 5

1 973
- In(z) — Ty ) + 0 (2*7) .
hich implies that Ks3(cs, ||||e) := lim Zs(I,u,c;z) 2 *(lnz) " = AT
whic plies that Ky(cs, |[|leo) = lim Zy(7, u, ¢; = Te158"

7.4. Computation of K,(sn, ||l|s) (n = 2,3) in corollary 2

e In dimension n = 2: We have I = {ej,es,e; + e}, u = (1,1,1) and ¢ = 0. Tt
follows that

d 1
(I, u,c;z) = / Y = —In®(x).
yiyays 3
Y1,2,Y3€[1,+00]
y1ys<z
yoys<w
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which implies that Ks(ss, |||le) = limyee Zo(,u, ¢;2) (Inz) ™3 = 1.

e In dimension n = 3: We have I = {e;,es,e3,€; + €3,e; +e€3,€; + €3,€; + e + €3},
u=1 and ¢ = 0. It follows that

d 11
Zs(I,u,c;z) = / Y =In"(2) dz = ——In"(x).
Y1Y2Y3YaYsYeYr 3360
Y1, y7€[l,400] 21 5...,27€[0,400]
Y1Y4Ysy7<x 21+24+25+27<1
Y2yayey7 < 29+z4+26+27<1
Y3YsY6 Y7 <T 23+25+26+27<1

We deduce that Ks(ss, [[||e) := limy o0 Zs(1, 0, ¢;2) (Inz) ™" = 5.

7.5. Computation of K,(uy,|||ls) (n =2,3) in corollary 3

e In dimension n = 2: We have I = {ej,e2}, u= (1,1) and ¢ = 0. It follows that

d
Iy(I,u,c;z) = / - In*(z)
Y1Y2
y17926[17+00[
y1<w, y2<z

and therefore that Ks(us, ||||eo) := limyseo Zo(I,u,c;z) (Inx)™2 = 1.

e In dimension n = 3: We have I = {e;,es,e3,e; + e3,€; + e3,e2 + e3}, u =1 and
c = 0. It follows that

d 11
Zs(I,u,c;z) = / W In°(z) dz = —In°(z)
Y1Y2Y3Y4YsYe 480
Y1, y6 €[1,400] 215,26 €[0,+00]
Y1Y4Y5<T 21+24+25<1
Y2yaY6 <T 2a+24+26<1
Y3Ys5Y6 <T 23+25+26<1

and therefore that Kjs(us, [[||o) := limy—e0 Zs(1, 0, ¢;2) (Inz) 0 = 5.

7.6. Computation of K, (v, ||||l) (n =2,3) in corollary 4

e In dimension n = 2: We have I = {ej,es,e; + e}, u=(1,1,1) and c = (1,1). It
3 1

follows that Zy(I,u,c;x) = / ysdy = 2% In(z) — §ZE2 +2x— 5 and therefore

y17y27y3€[1’+00[
Y1y3<x, y2y3<w

that Ka(va, ||||ee) := limy 0o Zo(I,u,c;2) 272 (Inx) ™' = 1.

e In dimension n = 3: We have I = {e;, es,e3,€; + €2,e; +e€3,€, + €3,€] + €3 + €3},
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u=1and c=(1,1,1). It follows that

IS(I, u, c; gj) = / y4y5y6y7dy ln ( ) / xz1+"‘+Z3+2Z4+"‘+2Z6+5Z7dz
Y1, yr€[L,400] 21,...,27€[0,4-00[
Y1Y4Ysy7<x 21+2z4+25+27<1
Y2Y4yey7<T z2+24+26+27<1
Y3YsY6 Y7 <T 23+25+26+27<1
:L,l—Z5—z6—z7 -1
_ 1n7(l,) xz1+z2+2z4+~~-+2z6+3z7 d217274 dZ57677
In(x)

25,26,27€[0,4-00[ 21,22,24€[0,4-00]
z5t+2z6+27<1 z21+24<l—2z5—27
zo+z4a<l—26—27

1—27—25Vzg

= 1114(1') / J]2Z4+'”+236+327 (ZL’I_Z5_ZG_Z7 o 1)(:):1—24—25—27 . 1)><
25,26,27€[0,400[  z4=0
z5+26+27<1
x (@777 — 1) dzydzs g

By symmetry in z5 and zg we get

1 (1=27)/2 25 1—zg—27 1—26—27 1—26—27
Ty(1,u, ¢ 2) = 2In( / / / / / / / /
27=0 26=0 z5= 24=0 27=0 z6=(1—27)/2 25=0 24=0
1 1 5 67
= 1—69(:3 In'(z) — ZxB In®(z) + 5:1:3 In(z) — o7 P+ O(a*).

We deduce that Ks(vs, [[[|o) = limy o Zs(1, 0, ¢;2) 73 (Inz) ™ = .

7.7. Computation of K,(.,||||la) (n = 2,3) in corollaries 5 and 6

7.7.1. Sargos’s volume constant

First we will recall some notations from §2.3.1 of [2] (2012). Let Q(X) = >_ ,cqupp(0) @aX*
be a generalized polynomial with positive coefficients that depends upon all the vari-
ables X1,...,X,. We apply the discussion in [7] (1987) (see also [6] (1988)) to define

a “volume constant” for Q).

By definition, the Newton polyhedron of @ (at infinity) is the set £2°(Q) := (conv(supp(Q)) — R%) .

Let Gy be the smallest face of £°(Q) which meets the diagonal A = R, 1. We denote
by oy the unique positive real number ¢ that satisfies t711 € Gy. Thus, there exists

a unique vector subspace G of largest codimension py such that Gy C o5 1 +
Both pg, 0g evidently depend upon @), but it is not necessary to indicate this in the
notation. We also set Qg (X) = >, cq, @aX?.

There exist finitely many facets of £%°(Q) that intersect in Gy. We denote their
normalized polar vectors by Ay,..., Ay.
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By a permutation of the coordinates X; one can suppose that @7 Re; ® CTS =

and that {e;+1,...,e,} is the set of vectors to which Gy is parallel (i.e. for which
Go = Go — R, e;). If Gy is compact then m = n.

Set A = Conv{0, A1, ..., AN, €p041,--.,€,}. It follows that dimA = n.

Definition 4. The volume constant associated to () is:

Ap(Q) :=n! Vol(A) / / Per(1,x,y) dx | dy .
[14o0)n—m \ JRT™70

In ([7] (1987), chap 3, th. 1.6) (also see [6] (1988)), P. Sargos proved the following
important result:

Theorem (P. Sargos): Let Q be a generalized polynomial with positive coefficients.

Then s — Y (Q;s) := / Q(x)™* dx converges absolutely in {Rs > oo}, and has
[1,+00)"
a meromorphic continuation to C with largest pole at s = og of order py. In addition,

the volume constant of Q) is given by

Ap(Q) = lim (s — 09)™ Y(Q;s) > 0. (25)

S—00

7.7.2. Mellin’s Formula

We will also use the following classical Mellin’s formula:
Let wy,...,w, € C such that R(w;) > 0Vi=0,...,r, Let p1,...,p, > 0. Then, for
s € C verifying R(s) > p1 + -+ + p,, we have :

L(s) (s—m——2) [I, (=) da
Smvitond e B v

where the notation |, ) denote the integral on the vertical line R(s) = p.

7.7.3. Computation of K (cn, ||||la) (n =2,3) in corollary 5

e In dimension n = 2: Corollary 5 implies that

Kofes o) = 57 AolT. P), (27)

where Ay(7, P) is the mixed volume constant (see §2.3.3 of [2] (2012)) associated to
the polynomial P = X{ + X and the pair T = <f, u= (u(ﬁ))ﬁej), where
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I={i(e1+e2) er,ex},and u(i(e; +ey)) =1and u(e)) = u(ey) = 2.
It follows then from the construction given in §2.3.3 of [2] (2012) that

Ao(T, P) = Ao(Q), (28)
where Ay(Q) is the volume constant associated to the polynomial
QX1 Xo, X3, Xa, X5) = X7 X9X + XXX
By using notations of §7.7.1, we have
EX(Q) := conv (supp(Q) — ]Ri) = conv ({(d/Q, d,d,0,0),(d/2,0,0,d,d)} — ]Ri) ,
Go = conv{(d/2,d,d,0,0),(d/2,0,0,d,d)}, oo=2/d and py=4.

Sargos’s Theorem above implies then that

s—2/d

2\ 4

4@ = g (s-3) v, (29)
We will now compute the principal part of the integral Y (Q; s).
First we remark that for R(s) > 2/d, we have

2 1
Y(Q, 8) = / (x(f/2$gl’g+l’(1i/2$i$g> d.’El 2,3,45 — d / ($2$3+$4$5) dLUQ ,3,4,5
[1,0)5 [1,00)

(30)
Mellin’s formula (26) implies that for R(s) > 2/d,

(s —2)['(z _, —ds
/ (:vzzvg + ZB4:B5) *drosas = 9ms / / )(:1:2933) d(s )(934:1:5) d dxg345dz
[1,00)% 1 00)4 (2/d)

(s)
(s — z)F(z) 1 1
~ 2mi d'T ENSTEL
T J(2/a) (s) [(s—2)—2]" [z — 3]
Moving the integration line to left until % and using residues theorem imply that
1 ['(s—2)I'(2) 1 1
(2525 + 2{xg) dwsgas = —/ dz (31)
. 2miJ(g) AT (s - =3 [ =3
M@ -3 T@MY6-3) EIE—g
d*T(s) [s — %}2 d*T(s) [s — %]2 d*T(s) [s — %]3

Since the integral in the right side of (31) defines a holomorphic function in R(s) >

2d’
we deduce by using in addition (30) that
N i ()’
A = i — 2 Y(Q;s) = d 2
O(Q) s—lg}d (5 d> (Q> S) AT (%) (3 )
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Combining (27), (40) and (32) implies that

Rl = 5By 53

e In dimension n = 3: Corollary 5 implies that

d8
KS(C37 HHd) = m Ao(7-7 P)7 (34)

where Ay(7, P) is the mixed volume constant (see §2.3.3 of [2] (2012)) associated to
the polynomial P = X{ + X¢ + X¢ and the pair T = (1:, u= (u(ﬁ))ﬁ€f>, where

1

- 1 1 1
I = {5(61 + €2 + 83), 5(81 + 82), 5(61 + 63), 5(62 + 63), 61,82,83}

and u = (1,1,1,1,2,2,2). It follows then from the construction given in §2.3.3 of [2]
(2012) that
Ao(T, P) = Ao(Q), (35)

where Ay(Q) is the volume constant associated to the polynomial

d/3 _d/2 d/2 d d d/3 d/2 d/2 d d d/3 d/2 d/2 d d
Q(x1,...,x10) = oy "y w3 Twiag + x) Txy Txy Txgwy + ay Cws' Try T asxd,.

By using notations of §7.7.1, we have
Go = conv{(¢,4,£,0,d,d,0,0,0,0),(%,4,0,4,0,0,d,d,0,0), (£4,0,4,4,0,0,0,0,d, d)},

3792797 3199V 9

UOZS/d and p0:8

Sargos’s Theorem implies then that

Ao(Q) = hm(s——§)8YxQ;$. (36)

s—3/d d

We will now compute the principal part of the integral Y (Q;s) at s = 3/d.
Mellin’s formula (26) implies that for £(s) > 3/d,

L ou 1 I(s — 21 — 2)T(21)T(22)T(5) " d2y o
N = o =g iy /,@_Z_z_5%z+z_a [@1¢y@_z_a]
1 273 1 27— 3 i T a i d

e

1

J

By using the residue theorem, we obtain (the details of computation are left to the
reader) that for £(s) > 3/d,

_ T ()°T (s )
8

Y(Q;s) = = 37
) = s e 0
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where H is a holomorphic function in the bigger domain Q = {R(s) > 2 }.

2d
Combining (34), (35), (36) and (37) implies that

31T (1)
Ks(es lllla) = 55515 dz(dF) () "
d

7.7.4. Computation of K, (vn, |||la) (n = 2,3) in corollary 6
e In dimension n = 2: Corollary 6 implies that

Kafon, ) = & Ao(T P), (39)

where Ay(7, P) is the mixed volume constant (see §2.3.3 of [2] (2012)) associated
tothe polynomial P = X¢ + X¢ and the pair T = (f, u= (u(ﬁ))ﬂd), where

I={i(e1+e2),e1,ez}, and u (3(e1 +e2)) =u(e;) = u(e) = 1.
It follows then from the construction given in §2.3.3 of [2] (2012) that

AO(T7 P) = AO(Q)? (40)
where Ay(Q) is the volume constant associated to the polynomial
Q(X1, Xo, X3) = X1 X4 + X2 x4,

By using notations of §7.7.1, we have

1 1
Gy = conv{(d/2,d,0),(d/2,0,d)}, og =2/d, po =2 and A = conv {0 2,0,0),=(0,1,1), 63} .

’ 3( d
It follows then from Definition 4 above that

_ 2 T(1/d)?
o _ 2/d _
Ao(T, P) = Ag(Q) = 3! Vol(A) 5 Q(1,x3) Y4 das = BT
By using in addition (39) we obtain that
1 T(1/d)?
K. = — : 41
e In dimension n = 3: Corollary 6 implies that
d5
Ky(v, [l0) = 5 AolT P), (42)

where Ay(7, P) is the mixed volume constant (see §2.3.3 of [2] (2012)) associated to
the polynomial P = X¢ + X¢ + X¢ and the pair T = (1:, u= (u(ﬁ))ﬁ€f>, where

~ 1 1 1 1
I = {5(61 + eq + 63), 5(61 + 62), 5(61 + 83), 5(82 + 63), 61,62,63}
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and u=(1,1,1,1,1,1,1). It follows then from the construction given in §2.3.3 of [2]
(2012) that

A0<T7 P) = AO(Q)a (43)
where Ay(Q) is the volume constant associated to the polynomial
Q(xy,...,x7) = x‘li/3xg/2a7d/2 d 4 d/gxg/2xd/2 d 4 a:d/?’xgﬂxiﬂ d

By using notations of §7.7.1, we have

Go = conv{(d/3,d/2,d/2,0,d,0,0),(d/3,d/2,0,d/2,0,d,0),(d/3,0,d/2,d/2,0,0,d)},
op=3/d and py=>5.

Sargos’s Theorem above implies then that

@ g, (-2 vi@ @

s—3/d

Using Mellin’s formula (26) as in the proof of (37) implies that for R(s) > 3/d, we
have

Y(Q;s) :/ (x‘li/?’xg/Q:vgﬂxg—i—xd/?’ d/2 d/QI _I_md/%gl/?xZ/?x«;) *dx12,3.456,7
[1,00)7

SO0 (s=HT(E), H()
dr(s) [s=3"  [s=3]

where H is a holomorphic function in the domain Q = {R(s) > 35 }.
We deduce that

AT, P) = @) = LI
It follows then from (42) that
Kalva ) = 5 (45)
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